Pre-Algebra : Two-Step Equations with Fractions

Study concepts, example questions & explanations for Pre-Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Two Step Equations With Fractions

Solve for \displaystyle x:

\displaystyle \frac{1}{2}x+\frac{3}{4}=9

Possible Answers:

\displaystyle 16\frac{1}{2}

\displaystyle 16\frac{3}{4}

\displaystyle 4\frac{1}{2}

\displaystyle 16\frac{1}{4}

Correct answer:

\displaystyle 16\frac{1}{2}

Explanation:

The goal is to isolate the variable on one side.

\displaystyle \frac{1}{2}x+\frac{3}{4}=9

Subtract \displaystyle \frac{3}{4 } from each side of the equation:

\displaystyle \frac{1}{2}x+\frac{3}{4}-\frac{3}{4}=9-\frac{3}{4}

\displaystyle \frac{1}{2}x=8\frac{1}{4}

Multiply both sides by \displaystyle 2:

\displaystyle x=16\frac{1}{2}

Example Question #1 : Two Step Equations With Fractions

Solve for \displaystyle x:

\displaystyle \frac{2}{3}x+6\frac{1}{3}=10\frac{1}{3}

Possible Answers:

\displaystyle 12

\displaystyle 3

\displaystyle 6

\displaystyle 9

Correct answer:

\displaystyle 6

Explanation:

The goal is to isolate the variable to one side.

\displaystyle \frac{2}{3}x+6\frac{1}{3}=10\frac{1}{3}

First, convert mixed numbers to improper fractions:

\displaystyle \frac{2}{3}x+\frac{19}{3}=\frac{31}{3}

Subtract \displaystyle \frac{19}{3} from both sides:

\displaystyle \frac{2}{3}x+\frac{19}{3}-\frac{19}{3}=\frac{31}{3}-\frac{19}{3}

\displaystyle \frac{2}{3}x=\frac{12}{3}

Multiply each side by the reciprocal of \displaystyle \frac{2}{3}:

\displaystyle \frac{3}{2}*\frac{2}{3}x=\frac{12}{3}*\frac{3}{2}

Cross out like terms and multiply:

\displaystyle \frac{1}{1}x=\frac{6}{1}*\frac{1}{1}

\displaystyle x=6

 

Example Question #1 : Two Step Equations With Fractions

Solve for \displaystyle x:

\displaystyle \frac{2}{3}x-\frac{1}{4}=\frac{1}{6}

Possible Answers:

\displaystyle -\frac{1}{8}

\displaystyle \frac{5}{8}

\displaystyle -\frac{1}{18}

\displaystyle \frac{5}{12}

\displaystyle \frac{5}{18}

Correct answer:

\displaystyle \frac{5}{8}

Explanation:

Step 1: Add \displaystyle \frac{1}{4} to both sides:

 \displaystyle \frac{2}{3}x-\frac{1}{4}+\frac{1}{4}=\frac{1}{6}+\frac{1}{4}

\displaystyle \frac{2}{3}x+0=\frac{1}{6}+\frac{1}{4}

\displaystyle \frac{2}{3}x=\frac{1}{6}+\frac{1}{4}

Step 2: Add \displaystyle \frac{1}{6} to \displaystyle \frac{1}{4}. Remember that when you add fractions, you must find common denominator. The common denominator for \displaystyle \frac{1}{4} and \displaystyle \frac{1}{6} is \displaystyle 12.   \displaystyle \frac{1}{6} becomes \displaystyle \frac{2}{12} when you multiply both the numerator and the denominator by \displaystyle 2. Similarly, \displaystyle \frac{1}{4} becomes \displaystyle \frac{3}{12} when you multiply both the numerator and the denominator by \displaystyle 3.

\displaystyle \frac{2}{3}x=\frac{1}{6}+\frac{1}{4}

\displaystyle \frac{2}{3}x=\frac{2}{12}+\frac{3}{12}

\displaystyle \frac{2}{3}x=\frac{5}{12}

Step 3: Multiply both sides of the equation by the reciprocal of \displaystyle \frac{2}{3}:

\displaystyle \frac{3}{2}\times \frac{2}{3}x=\frac{5}{12}\times \frac{3}{2}

\displaystyle 1x=\frac{15}{24}

\displaystyle x=\frac{15}{24}

Step 4: Simplify the fraction by dividing the numerator and the denominator by the Greatest Common Factor (GCF). The GCF of \displaystyle 15 and \displaystyle 24 is \displaystyle 3:

\displaystyle x=\frac{15}{24}=\frac{\frac{15}{3}}{\frac{24}{3}}=\frac{5}{8}

\displaystyle x=\frac{5}{8}

Example Question #1 : Two Step Equations With Fractions

Solve for \displaystyle \small x:

 \displaystyle \frac{1}{2}x+2=4

Possible Answers:

\displaystyle \small 4

\displaystyle \small 6

\displaystyle \small 2

\displaystyle \small 8

\displaystyle \small 1

Correct answer:

\displaystyle \small 4

Explanation:

You are trying to isolate the \displaystyle \small x

To do this you must first subtract both sides by 2 to get

\displaystyle \frac{1}{2}x=2

This then becomes a one-step problem where you multiply both sides by 2 to get

\displaystyle x=4

Example Question #1 : Two Step Equations With Fractions

Solve for x:

\displaystyle x-\frac{1}{4}=\frac{1}{2}

Possible Answers:

\displaystyle x=-\frac{1}{4}

\displaystyle x=1

\displaystyle x=\frac{3}{2}

\displaystyle x=\frac{3}{4}

\displaystyle x=\frac{3}{8}

Correct answer:

\displaystyle x=\frac{3}{4}

Explanation:

Once you've isolated x, it's important to find the lowest common denominator so that you can add the two fractions you're working with. 

Step 1: Isolate x and convert fractions so that they have a common denominator

\displaystyle x-\frac{1}{4}+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}

\displaystyle x=\frac{1}{2}+ \frac{1}{4}=\frac{1\cdot 2}{2\cdot 2} +\frac{1}{4}=\frac{2}{4}+\frac{1}{4}

Step 2: solve for x

\displaystyle x=\frac{2}{4}+\frac{1}{4}=\frac{3}{4}, x=\frac{3}{4}

Example Question #5 : Two Step Equations With Fractions

Solve for \displaystyle x.

\displaystyle \frac{x}4=\frac{9}x{}{}

Possible Answers:

\displaystyle x=\frac{36}x{}

\displaystyle x=\frac{4}9{}

\displaystyle x=\pm 6

\displaystyle x=\pm \frac{3}2{}

\displaystyle x=36

Correct answer:

\displaystyle x=\pm 6

Explanation:

Cross multiplication is a short-cut that comes from multiplying by the denominators on both sides of an equation. Broken down, it works like this:

\displaystyle 4\cdot \frac{x}4=\frac{9}x\cdot 4{}{}

The 4's on the left side of the equation cancel out.

\displaystyle x=\frac{9\cdot 4}x{}

Now, do the same with the denominator on the right side.

\displaystyle x\cdot x=\frac{9\cdot 4}x\cdot x{}

The \displaystyle x's on the right cancel out.

\displaystyle x\cdot x=9\cdot 4

This is simply the result of removing the denominators, then multiplying them on the opposite sides, i.e. cross multiplication.

Now, to finish solving for \displaystyle x, simplify both sides.

\displaystyle x^{2}=36

Then take the square root to finish.

\displaystyle x=\sqrt{36}

\displaystyle x=\pm 6

 

 

 

 

Example Question #1 : Two Step Equations With Fractions

Solve for \displaystyle s:

\displaystyle \frac{2}{3}s+\frac{1}{3}=-\frac{1}{3}

Possible Answers:

\displaystyle s=1

\displaystyle s=2

\displaystyle s=0

\displaystyle s=-1

Correct answer:

\displaystyle s=-1

Explanation:

\displaystyle \frac{2}{3}s+\frac{1}{3}=-\frac{1}{3}

\displaystyle \frac{2}{3}s+\frac{1}{3}-\frac{1}{3}=-\frac{1}{3}-\frac{1}{3}

\displaystyle \frac{2}{3}s=-\frac{2}{3}

\displaystyle \frac{3}{2}\cdot \left(\frac{2}{3}s\right)=\frac{3}{2}\cdot \left(-\frac{2}{3}\right)

\displaystyle s=-1

Example Question #1 : Two Step Equations With Fractions

Solve for \displaystyle x.

\displaystyle \frac{2}{5}x + \frac{4}{3} = 2

Possible Answers:

\displaystyle x=\frac{1}{3}

\displaystyle x=2

\displaystyle x=\frac{5}{3}

\displaystyle x=\frac{2}{3}

\displaystyle x=\frac{5}{6}

Correct answer:

\displaystyle x=\frac{5}{3}

Explanation:

First, you want to leave all terms with x on one side and all other terms on the other side. To do this, we can subtract 4/3 from both sides. 

We now have 

\displaystyle \frac{2}{5}x = \frac{2}{3}

We can now multiply both sides by the reciprocal of 2/5, which is 5/2, to be able to solve for just x.

\displaystyle x = \frac{2}{3} * \frac{5}{2} = \frac{5}{3}

Example Question #4 : Two Step Equations With Fractions

Solve for \displaystyle x:

\displaystyle 1\frac{1}{3}x+7\frac{1}{3}=15\frac{1}{3}

Possible Answers:

\displaystyle 6\frac{1}{3}

\displaystyle 6

\displaystyle 7

\displaystyle 8

\displaystyle 6\frac{2}{3}

Correct answer:

\displaystyle 6

Explanation:

Explanation:

The goal is to isolate the variable to one side.

\displaystyle 1\frac{1}{3}x+7\frac{1}{3}=15\frac{1}{3}

First, convert the mixed numbers to improper fractions:

\displaystyle \frac{4}{3}x+\frac{22}{3}=\frac{46}{3}

Subtract \displaystyle \frac{22}{3}from both sides:

\displaystyle \frac{4}{3}x+\frac{22}{3}-\frac{22}{3}=\frac{46}{3}-\frac{22}{3}

\displaystyle \frac{4}{3}x=\frac{24}{3}

Multiply each side by the reciprocal of \displaystyle \frac{3}{4}:

\displaystyle \frac{3}{4}*\frac{4}{3}x=\frac{24}{3}*\frac{3}{4}

\displaystyle x=6

Example Question #5 : Two Step Equations With Fractions

Solve for "\displaystyle x"

\displaystyle \frac{1}{2}x -8=4x-1

Possible Answers:

\displaystyle x=5

\displaystyle x=4

\displaystyle x=-2

\displaystyle x=2

\displaystyle x=-3

Correct answer:

\displaystyle x=-2

Explanation:

1.) Add 8 to both sides, removing the "\displaystyle -8". It now reads \displaystyle \frac{1}{2}x=4x+7

2.) Multiply both sides by 2, removing the \displaystyle \frac{1}{2}. It now reads \displaystyle x=8x+14

3.) Subtract \displaystyle 8x from both sides, removing the "\displaystyle 8x". It now reads \displaystyle -7x=14

4.) Divide both sides by "\displaystyle -7", resulting in \displaystyle x=-2

Learning Tools by Varsity Tutors