All New SAT Math - Calculator Resources
Example Questions
Example Question #1 : Solve One Variable Linear Equations And Inequalities: Ccss.Math.Content.Hsa Rei.B.3
Solve the following inequality for , round your answer to the nearest tenth.
The first step is to square each side of the inequality.
Now simplify each side.
Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.
Now we can use the quadratic formula.
Recall the quadratic formula.
Where , , and , correspond to coefficients in the quadratic equation.
In this case , , and .
Now plug these values into the quadratic equation, and we get.
Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.
Example Question #491 : High School: Algebra
Solve the following inequality for , round your answer to the nearest tenth.
The first step is to square each side of the inequality.
Now simplify each side.
Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.
Now we can use the quadratic formula.
Recall the quadratic formula.
Where , , and , correspond to coefficients in the quadratic equation.
In this case , , and .
Now plug these values into the quadratic equation, and we get.
Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.
Example Question #191 : Equations / Inequalities
Solve the following inequality for , round your answer to the nearest tenth.
The first step is to square each side of the inequality.
Now simplify each side.
Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.
Now we can use the quadratic formula.
Recall the quadratic formula.
Where , , and , correspond to coefficients in the quadratic equation.
In this case , , and .
Now plug these values into the quadratic equation, and we get.
Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.
Example Question #192 : Equations / Inequalities
Solve the following inequality for , round your answer to the nearest tenth.
The first step is to square each side of the inequality.
Now simplify each side.
Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.
Now we can use the quadratic formula.
Recall the quadratic formula.
Where , , and , correspond to coefficients in the quadratic equation.
In this case , , and .
Now plug these values into the quadratic equation, and we get.
Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.
Example Question #193 : Equations / Inequalities
Solve the following inequality for , round your answer to the nearest tenth.
The first step is to square each side of the inequality.
Now simplify each side.
Now subtract the left side of the inequality to make it zero, so that we can use the quadratic formula.
Now we can use the quadratic formula.
Recall the quadratic formula.
Where , , and , correspond to coefficients in the quadratic equation.
In this case , , and .
Now plug these values into the quadratic equation, and we get.
Now since we are dealing with an inequality, we put the least value on the left side, and the greatest value on the right. It will look like the following.
Certified Tutor
Certified Tutor