Multivariable Calculus : Divergence, Gradient, & Curl

Study concepts, example questions & explanations for Multivariable Calculus

varsity tutors app store varsity tutors android store

All Multivariable Calculus Resources

14 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : Triple Integration Of Surface

Calculate the curl for the following vector field.

Possible Answers:

Correct answer:

Explanation:

In order to calculate the curl, we need to recall the formula.

where , and  correspond to the components of a given vector field: 

 

Now lets apply this to out situation.

 

 

 

Thus the curl is

Example Question #2 : Triple Integration Of Surface

Compute , where .

Possible Answers:

Correct answer:

Explanation:

All we need to do is calculate the partial derivatives and add them together.

Example Question #1 : Divergence, Gradient, & Curl

Calculate the curl for the following vector field.

Possible Answers:

Correct answer:

Explanation:

In order to calculate the curl, we need to recall the formula.

where , and  correspond to the components of a given vector field: 

 

Now lets apply this to out situation.

 

 

 

Thus the curl is

Example Question #2 : Divergence, Gradient, & Curl

Compute , where .

Possible Answers:

Correct answer:

Explanation:

All we need to do is calculate the partial derivatives and add them together.

All Multivariable Calculus Resources

14 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors