Linear Algebra : Symmetric Matrices

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : Operations And Properties

\displaystyle A= \begin{bmatrix} 0 & 8+7 i \\ -8+7i &0 \end{bmatrix}

True or false: \displaystyle A is a skew-Hermitian matrix.

Possible Answers:

False

True

Correct answer:

True

Explanation:

\displaystyle A is a skew-Hermitian matrix if it is equal to the additive inverse of its conjugate transpose - that is, if

\displaystyle A = -A^{*}

To determine whether this is the case, first, find the transpose of \displaystyle A by exchanging rows with columns in \displaystyle A:

\displaystyle A= \begin{bmatrix} 0 & 8+7 i \\ -8+7i &0 \end{bmatrix}

\displaystyle A^{T}= \begin{bmatrix} 0 & -8+7 i \\ 8+7i &0 \end{bmatrix}

Obtain the conjugate transpose by changing each element to its complex conjugate:

\displaystyle A^{*}= \begin{bmatrix} 0 & -8-7 i \\ 8-7i &0 \end{bmatrix}

Now find the additive inverse of this by changing each entry to its additive inverse:

\displaystyle -A^{*}= \begin{bmatrix} 0 & 8+7 i \\- 8+7i &0 \end{bmatrix} = A

\displaystyle A = -A^{*}, so \displaystyle A is skew-Hermitian.

 

 

Example Question #91 : Operations And Properties

\displaystyle A= \begin{bmatrix} 1 & 8+7 i \\ -8+7i &1 \end{bmatrix}

True or false: \displaystyle A is a skew-Hermitian matrix.

Possible Answers:

False

True

Correct answer:

False

Explanation:

\displaystyle A is a skew-Hermitian matrix if it is equal to the additive inverse of its conjugate transpose - that is, if

\displaystyle A = -A^{*}

To determine whether this is the case, first, find the transpose of \displaystyle A by exchanging rows with columns in \displaystyle A:

\displaystyle A= \begin{bmatrix} 1 & 8+7 i \\ -8+7i &1 \end{bmatrix}

\displaystyle A^{T}= \begin{bmatrix}1 & -8+7 i \\ 8+7i &1 \end{bmatrix}

Obtain the conjugate transpose by changing each element to its complex conjugate:

\displaystyle A^{*}= \begin{bmatrix} 1 & -8-7 i \\ 8-7i &1\end{bmatrix}

Now find the additive inverse of this by changing each entry to its additive inverse:

\displaystyle -A^{*}= \begin{bmatrix} -1 & 8+7 i \\- 8+7i &-1 \end{bmatrix} \ne A

\displaystyle A \ne -A^{*}, so \displaystyle A is not skew-Hermitian.

Example Question #91 : Operations And Properties

\displaystyle A= \begin{bmatrix} 1 & 3+ i & -2 - i \\ -3+i &1 & 5i \\ 2-i &5i & 1\end{bmatrix}

True or false: \displaystyle A is a skew-Hermitian matrix.

Possible Answers:

True

False

Correct answer:

False

Explanation:

\displaystyle A is a skew-Hermitian matrix if it is equal to the additive inverse of its conjugate transpose - that is, if

\displaystyle A = -A^{*}

To determine whether this is the case, first, find the transpose of \displaystyle A by exchanging rows with columns in \displaystyle A:

\displaystyle A= \begin{bmatrix} 1 & 3+ i & -2 - i \\ -3+i &1 & 5i \\ 2-i &5i & 1\end{bmatrix}

\displaystyle A^{T}= \begin{bmatrix} 1 & -3+i & 2-i \\ 3+ i &1 & 5i \\ -2 - i &5i & 1\end{bmatrix}

Obtain the conjugate transpose by changing each element to its complex conjugate:

\displaystyle A^{*}= \begin{bmatrix} 1 &- 3-i & 2+i \\ 3- i &1 & -5i \\ -2 + i &-5i & 1\end{bmatrix}

Now find the additive inverse of this by changing each entry to its additive inverse:

\displaystyle -A^{*} = \begin{bmatrix} -1 & 3+ i & -2 - i \\ -3+i &-1 & 5i \\ 2-i &5i & -1\end{bmatrix}

\displaystyle A \ne -A^{*}, so \displaystyle A is not skew-Hermitian.

 

 

Example Question #34 : Symmetric Matrices

\displaystyle A= \begin{bmatrix} 0 & 3+ i & -2 - i \\ -3+i &0 & 5i \\ 2-i &5i & 0\end{bmatrix}

True or false: \displaystyle A is a skew-Hermitian matrix.

Possible Answers:

True

False

Correct answer:

True

Explanation:

\displaystyle A is a skew-Hermitian matrix if it is equal to the additive inverse of its conjugate transpose - that is, if

\displaystyle A = -A^{*}

To determine whether this is the case, first, find the transpose of \displaystyle A by exchanging rows with columns in \displaystyle A:

\displaystyle A= \begin{bmatrix} 0& 3+ i & -2 - i \\ -3+i &0 & 5i \\ 2-i &5i &0\end{bmatrix}

\displaystyle A^{T}= \begin{bmatrix} 0 & -3+i & 2-i \\ 3+ i &0 & 5i \\ -2 - i &5i & 0\end{bmatrix}

Obtain the conjugate transpose by changing each element to its complex conjugate:

\displaystyle A^{*}= \begin{bmatrix} 0 &- 3-i & 2+i \\ 3- i &0 & -5i \\ -2 + i &-5i &0\end{bmatrix}

Now find the additive inverse of this by changing each entry to its additive inverse:

\displaystyle -A^{*} = \begin{bmatrix} 0& 3+ i & -2 - i \\ -3+i &0 & 5i \\ 2-i &5i & 0\end{bmatrix} = A

\displaystyle A = -A^{*}, so \displaystyle A is skew-Hermitian.

 

 

Example Question #92 : Operations And Properties

\displaystyle A = \begin{bmatrix} 0 & 4 - i\sqrt{2} \\ x & 0\end{bmatrix}

Evaluate \displaystyle x so that \displaystyle A is a skew-Hermitian matrix.

Possible Answers:

\displaystyle A cannot be made skew-Hermitian regardless of the value of \displaystyle x.

\displaystyle x = -4+i\sqrt{2}

\displaystyle x = 4-i\sqrt{2}

\displaystyle x = 4+i\sqrt{2}

\displaystyle x = -4-i\sqrt{2}

Correct answer:

\displaystyle x = -4-i\sqrt{2}

Explanation:

\displaystyle A is a skew-Hermitian matrix if it is equal to the additive inverse of its conjugate transpose - that is, if

\displaystyle A = -A^{*}

Therefore, first, take the transpose of \displaystyle A:

\displaystyle A ^{T}= \begin{bmatrix} 0 &x \\ 4 - i\sqrt{2} & 0\end{bmatrix}

Obtain the conjugate transpose by changing each element to its complex conjugate:

\displaystyle A ^{*}= \begin{bmatrix} 0 &\overline{x} \\ 4+ i\sqrt{2} & 0\end{bmatrix}

Now find the additive inverse of this by changing each entry to its additive inverse:

\displaystyle -A ^{*}= \begin{bmatrix} 0 &-\overline{x} \\ -4- i\sqrt{2} & 0\end{bmatrix}

For \displaystyle A = -A^{*}, or,

\displaystyle \begin{bmatrix} 0 & 4 - i\sqrt{2} \\ x & 0\end{bmatrix}= \begin{bmatrix} 0 &-\overline{x} \\ -4- i\sqrt{2} & 0\end{bmatrix}i

It is necessary and sufficient that the two equations

\displaystyle - \overline{x} = 4-i\sqrt{2}

and

\displaystyle x =-4- i\sqrt{2}

These conditions are equivalent, so

\displaystyle x =-4- i\sqrt{2}

makes \displaystyle A skew-Hermitian.

Example Question #93 : Operations And Properties

Which of the following matrices is "Skew-symmetric"? 

Possible Answers:

\displaystyle \begin{bmatrix} 0&-5 \\ 5& 0 \end{bmatrix}

\displaystyle \begin{bmatrix} 0&5 \\ 5& 0 \end{bmatrix}

\displaystyle \begin{bmatrix} -1&5 \\ -5& -1 \end{bmatrix}

\displaystyle \begin{bmatrix} -1&-5 \\ 5& 1 \end{bmatrix}

\displaystyle \begin{bmatrix} 1&5 \\ 5& 1 \end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix} 0&-5 \\ 5& 0 \end{bmatrix}

Explanation:

A skew-symmetric matrix \displaystyle A is one that becomes negative once the transpose is taken, or \displaystyle A^T=-A.

We have

\displaystyle \begin{bmatrix} 0&-5 \\ 5& 0 \end{bmatrix}^T =\begin{bmatrix} 0& 5\\ -5& 0 \end{bmatrix} = -\begin{bmatrix} 0&-5 \\ 5& 0 \end{bmatrix}.

Hence \displaystyle \begin{bmatrix} 0&-5 \\ 5& 0 \end{bmatrix} is skew-symmetric.

Learning Tools by Varsity Tutors