All ISEE Middle Level Reading Resources
Example Questions
Example Question #4 : Main Idea, Details, Opinions, And Arguments In Narrative Science Passages
"Comparing Technologies: A Difficult Endeavor" by Matthew Minerd (2014)
Comparisons of technology are often difficult to make, not only because of the rapid pace of improvements but also because of the many new applications that are available as time progresses. If we were to consider the contemporary graphing calculator and the calculation capacities of computing machines from fifty years ago, there would be astounding improvements between these two devices. However, the improvements are not reduced merely to speed improvements. A graphing calculator also has numerous output capacities that far exceed those available much older computers, none of which had the ability to represent their output in any manner even closely resembling that of contemporary devices. Merely consider the display capacities of such a device. These enable users to input many new kinds of information, enabling design engineers to design new hardware functions to match the new means of collecting user input.
The situation is even more obvious when one considers the numerous functions performed by a modern “smartphone.” These devices are equipped with a panoply of features. With all of these new functions come many new types of computational capabilities as well. In order to process images quickly, specialized hardware must be designed and software written for it in order to ensure that there are few issues with the phone’s operation. Indeed, the whole “real time” nature of telecommunications has exerted numerous pressures on the designers of computing devices. Layers of complexity, at all levels of production and development, are required to ensure that the phone can function in a synchronous manner. Gone are the days of asynchronous processing, when the computer user entered data into a mainframe, only to wait for a period of time before the processing results were provided. Today, even the smallest of digital devices must provide seamless service for users. The effects of this requirement are almost beyond number.
Which of the following best describes the contrast between newer and older calculating devices?
Older calculating machines broke down far more frequently than do modern calculators.
Newer calculators are blazingly faster than older calculating machines.
Previous calculators had no output capacities whatsoever.
None of the other answers
They differ both in capabilities as well as overall speed.
They differ both in capabilities as well as overall speed.
In the selection, there are two key sentences: "However, the improvements are not reduced merely to speed improvements. A graphing calculator also has numerous output capacities that far exceed those available much older computers." The passage marks two points regarding the difference between the older and newer devices. They differ both with regard to speed and their ability to output data. The answer that speaks of having differing "capabilities" captures the distinction in output well enough for our answer. The other answers either bring in data not listed in our passage or are too narrow in scope.
Example Question #2 : Drawing Conclusions In Science Passages
"Interpreting the Copernican Revolution" by Matthew Minerd (2014)
The expressions of one discipline can often alter the way that other subjects understand themselves. Among such cases are numbered the investigations of Nicolaus Copernicus. Copernicus is best known for his views concerning heliocentrism, a view which eventually obliterated many aspects of the ancient/medieval worldview, at least from the standpoint of physical science. It had always been the natural view of mankind that the earth stood at the center of the universe, a fixed point in reference to the rest of the visible bodies. The sun, stars, and planets all rotated around the earth.
With time, this viewpoint became one of the major reference points for modern life. It provided a provocative image that was used—and often abused—by many people for various purposes. For those who wished to weaken the control of religion on mankind, it was said that the heliocentric outlook proved man’s insignificance. In contrast with earlier geocentrism, heliocentrism was said to show that man is not the center of the universe. He is merely one small being in the midst of a large cosmos. However, others wished to use the “Copernican Revolution” in a very different manner. These thinkers wanted to show that there was another “recentering” that had to happen. Once upon a time, we talked about the world. Now, however, it was necessary to talk of man as the central reference point. Just as the solar system was “centered” on the sun, so too should the sciences be centered on the human person.
However, both of these approaches are fraught with problems. Those who wished to undermine the religious mindset rather misunderstood the former outlook on the solar system. The earlier geocentric mindset did not believe that the earth was the most important body in the heavens. Instead, many ancient and medieval thinkers believed that the highest “sphere” above the earth was the most important being in the physical universe. Likewise, the so-called “Copernican Revolution” in physics was different from the one applied to the human person. Copernicus’ revolution showed that the human point of view was not the center, whereas the later forms of “Copernican revolution” wished to show just the opposite.
Of course, there are many complexities in the history of such important changes in scientific outlook. Nevertheless, it is fascinating to see the wide-reaching effects of such discoveries, even when they have numerous, ambiguous effects.
How are two uses of the image of heliocentrism contrasted in this passage?
One calls for scientific detachment while the other calls for engagement in the world of culture.
One implies the insignificance of the human person while the other implies humanity's greatness.
One is primarily scientific while the other is religious at its core.
One calls for detached peace while the other is likely to breed wars.
None of the other answers
One implies the insignificance of the human person while the other implies humanity's greatness.
The general contrast is between "man, the speck on a rock" and "man, the center of all things." The idea for one view is that the human person is insignificant in comparison to the rest of the universe, which dwarfs his little life on Earth. The other view makes the human person so significant that the study of human life is central.
Example Question #1 : Comparing And Contrasting Ideas In And Aspects Of Natural Science Passages
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
How does the quotation from Mr. Gosse relate to the evidence provided by other scientists earlier in the passage?
It has nothing to do with the previous evidence.
It suggests that some of the previous evidence may be true, but some may be false.
It supports the same conclusions that the previous evidence supports.
It contradicts the previous evidence and supports a different hypothesis.
It suggests that the earlier evidence applies not only to hummingbirds but to another type of bird as well.
It supports the same conclusions that the previous evidence supports.
Let’s consider what Mr. Gosse is saying. The passage says, “Mr. Gosse also remarks, ‘All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.’” Paraphrasing that, Mr. Gosse is saying that he has seen hummingbirds contort themselves in the air and he’s pretty sure they’re doing this in order to catch insects. The evidence provided by scientists earlier in the passage supports the idea that hummingbirds eat insects, just like Mr. Gosse’s does. We can’t say that Gosse’s evidence contradicts the earlier evidence, suggests that some of it may be false, or has nothing to do with the previous evidence. It also doesn’t suggest that the previous evidence can be applied to birds other than hummingbirds, because Mr. Gosse says that he is only discussing hummingbirds and we are to infer that the Polytmus is a hummingbird. So, the correct answer is that “it supports the same conclusions that the previous evidence supports.”
Example Question #2 : Comparing And Contrasting Ideas In And Aspects Of Natural Science Passages
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
Which of the following does the author contrast in this passage?
Hummingbirds that eat flower nectar and hummingbirds that eat insects
Hummingbirds with long tails and hummingbirds with short tails
The beliefs of historical scientists and the beliefs of scientists of the author’s time
The results of feeding a hummingbird insects and the results of feeding a hummingbird flower nectar
The author’s opinion about what hummingbirds eat and Mr. Gosse’s opinion about what hummingbirds eat
The beliefs of historical scientists and the beliefs of scientists of the author’s time
Nowhere in the passage is the feeding of hummingbirds by humans mentioned, so “The results of feeding a hummingbird insects and the results of feeding a hummingbird flower nectar” cannot be correct. While a hummingbird with a long tail, the Polytmus, is mentioned, it is not contrasted with any short-tailed hummingbirds. The author appears to agree with Mr. Gosse’s opinion about what hummingbirds eat, so “The author’s opinion about what hummingbirds eat and Mr. Gosse’s opinion about what hummingbirds eat” cannot be correct either. This leaves us with “Hummingbirds that eat flower nectar and hummingbirds that eat insects” and “the beliefs of historical scientists and the beliefs of scientists of the author’s time.” While the passage is concerned with what hummingbirds eat, it doesn’t suggest that some types of hummingbirds eat only nectar and others eat only insects. Hummingbirds are considered as an entire group; they’re never divided into “hummingbirds that eat insects” and “hummingbirds that eat flower nectar.” This leaves us with one answer choice, the correct one: “The beliefs of historical scientists and the beliefs of scientists of the author’s time.” These beliefs are contrasted in the paragraph’s second sentence: “All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects.”
Example Question #2 : Argumentative Science Passages
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Howell’s story is different from that of Mr. Trouvelot’s in that __________.
Howell acted alone while Trouvelot worked with a group
Howell could be punished by law, while Trouvelot could not
Howell worked for a zoo while Trouvelot was a scientist
Howell sought to capture insects while Trouvelot sought to release them
Howell acted purposely while Trouvelot introduced the moths by accident
Howell acted purposely while Trouvelot introduced the moths by accident
According to the passage, what did Howell do? He was caught skinning bison in Yellowstone National Park and there was no way to punish him, a point about which the author is frustrated. What did Mr. Trouvelot do? He accidentally released gypsy moths into the United States, where they’ve caused a lot of trouble since. Nothing in the passage says that Mr. Trouvelot worked in a group, so we can eliminate the answer “Howell acted alone while Mr. Trouvelot worked with a group.” Similarly, while the passage says that Mr. Trouvelot was a scientist (an entomologist), nothing says that Howell worked for a zoo, so “Howell worked for a zoo while Trouvelot was a scientist” can’t be correct. The author brings up Howell’s story as an example of someone who couldn’t be punished by law for what the author considers an egregiously bad act, so “Howell could be punished by law, while Mr. Trouvelot could not” can’t be correct either. Howell’s story has nothing to do with insects and Mr. Trouvelot released his gypsy moths on accident, so “Howell sought to capture insects while Trouvelot sought to release them” cannot be the correct answer. This leaves us with one answer choice, the correct one: “Howell acted purposely while Trouvelot introduced the moths by accident.”
Example Question #51 : Sat Critical Reading
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
For what reason does the author describe the Irish hare as “vegetarian” in the underlined sentence?
To provide insight about what food is available in arctic environments
To provide information about the hare's diet that the reader may not know
To help readers empathize with the hare
To contrast the hare with the stoat and the weasel
To encourage the reader to switch to a vegetarian diet
To contrast the hare with the stoat and the weasel
The underlined sentence is the last sentence of the third paragraph, “The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey. One could reasonably infer that a hare would be vegetarian, so “To provide information about the hare’s diet that the reader may not know” cannot be the correct answer. The section doesn’t aim to help readers empathize with the hare any more than the stoat and weasel, so “To help readers empathize with the hare” cannot be correct either. The sentence doesn’t specifically encourage the reader to do anything; it is merely providing information about certain animals; so, “To encourage the reader to switch to a vegetarian diet” cannot be correct. “To provide insight about what food is available in arctic environments” doesn’t make sense either, because we are not told about the food specifically available in arctic environments; we can’t even assume that there are only plants available, as the stoat and weasel eat meat. That brings us to the correct answer: “To contrast the hare with the stoat and the weasel.” The word “vegetarian” specifically contrasts with the word “carnivorous” used later in the sentence to describe the stoat and weasel. This contrast mirrors the contrast of defensive and aggressive/defensive color-changing adaptations which the author is discussing in the sentence.
Example Question #1 : Comparing And Contrasting In Science Passages
Adapted from Cassell’s Natural History by Francis Martin Duncan (1913)
The penguins are a group of birds inhabiting the southern ocean, for the most part passing their lives in the icy waters of the Antarctic seas. Like the ratitae, penguins have lost the power of flight, but the wings are modified into swimming organs and the birds lead an aquatic existence and are scarcely seen on land except in the breeding season. They are curious-looking creatures that appear to have no legs, as the limbs are encased in the skin of the body and the large flat feet are set so far back that the birds waddle along on land in an upright position in a very ridiculous manner, carrying their long narrow flippers held out as if they were arms. When swimming, penguins use their wings as paddles while the feet are used for steering.
Penguins are usually gregarious—in the sea, they swim together in schools, and on land, assemble in great numbers in their rookeries. They are very methodical in their ways, and on leaving the water, the birds always follow well-defined tracks leading to the rookeries, marching with much solemnity one behind the other in soldierly order.
The largest species of penguins are the king penguin and the emperor penguin, the former being found in Kerguelen Land, the Falklands, and other southern islands, and the latter in Victoria Land and on the pack ice of the Antarctic seas. As they are unaccustomed from the isolation of their haunts to being hunted and persecuted by man, emperor penguins are remarkably fearless, and Antarctic explorers invading their territory have found themselves objects of curiosity rather than fear to the strange birds who followed them about as if they were much astonished at their appearance.
The emperor penguin lays but a single egg and breeds during the intense cold and darkness of the Antarctic winter. To prevent contact with the frozen snow, the bird places its egg upon its flat webbed feet and crouches down upon it so that it is well covered with the feathers. In spite of this precaution, many eggs do not hatch and the mortality amongst the young chicks is very great.
What aspect(s) of the king penguin and the emperor penguin does the passage contrast?
The locations in which they live, their food sources, and their appearances
Their food sources and appearances
The locations in which they live
The locations in which they live and their food sources
Their appearances
The locations in which they live
The passage mentions the king penguin and the emperor penguin at the beginning of its third paragraph, so we can look there to identify how the two are contrasted. Only one sentence in the passage talks about the king penguin:
“The largest species of penguins are the king penguin and the emperor penguin, the former being found in Kerguelen Land, the Falklands, and other southern islands, and the latter in Victoria Land and on the pack ice of the Antarctic seas.”
While the answer choices about for sources and appearances may seem likely, but the correct answer is “The locations in which they live,” as this is the only aspect of the king penguin and the emperor penguin that is contrasted in the passage.
Example Question #2 : Extrapolating From The Text In Natural Science Passages
Adapted from “Feathers of Sea Birds and Wild Fowl for Bedding” from The Utility of Birds by Edward Forbush (ed. 1922)
In the colder countries of the world, the feathers and down of waterfowl have been in great demand for centuries as filling for beds and pillows. Such feathers are perfect non-conductors of heat, and beds, pillows, or coverlets filled with them represent the acme of comfort and durability. The early settlers of New England saved for such purposes the feathers and down from the thousands of wild-fowl which they killed, but as the population increased in numbers, the quantity thus furnished was insufficient, and the people sought a larger supply in the vast colonies of ducks and geese along the Labrador coast.
The manner in which the feathers and down were obtained, unlike the method practiced in Iceland, did not tend to conserve and protect the source of supply. In Iceland, the people have continued to receive for many years a considerable income by collecting eider down, but there they do not “kill the goose that lays the golden eggs.” Ducks line their nests with down plucked from their own breasts and that of the eider is particularly valuable for bedding. In Iceland, these birds are so carefully protected that they have become as tame and unsuspicious as domestic fowls In North America. Where they are constantly hunted they often conceal their nests in the midst of weeds or bushes, but in Iceland, they make their nests and deposit their eggs in holes dug for them in the sod. A supply of the ducks is maintained so that the people derive from them an annual income.
In North America, quite a different policy was pursued. The demand for feathers became so great in the New England colonies about the middle of the eighteenth century that vessels were fitted out there for the coast of Labrador for the express purpose of securing the feathers and down of wild fowl. Eider down having become valuable and these ducks being in the habit of congregating by thousands on barren islands of the Labrador coast, the birds became the victims of the ships’ crews. As the ducks molt all their primary feathers at once in July or August and are then quite incapable of flight and the young birds are unable to fly until well grown, the hunters were able to surround the helpless birds, drive them together, and kill them with clubs. Otis says that millions of wildfowl were thus destroyed and that in a few years their haunts were so broken up by this wholesale slaughter and their numbers were so diminished that feather voyages became unprofitable and were given up.
This practice, followed by the almost continual egging, clubbing, shooting, etc. by Labrador fishermen, may have been a chief factor in the extinction of the Labrador duck, that species of supposed restricted breeding range. No doubt had the eider duck been restricted in its breeding range to the islands of Labrador, it also would have been exterminated long ago.
Which of the following does the passage directly compare?
The price of down in Iceland and North America
The nesting habits of hunted and protected ducks
Ducks that nest on the Labrador coast and ducks that nest in Iceland
The relative warmth of feathers and down as insulating materials
The use of eider down in bedding in North America and in Iceland
The nesting habits of hunted and protected ducks
Of the given answer choices, the passage only compares “the nesting habits of hunted and protected ducks.” It does this when the author says, “In Iceland, these birds are so carefully protected that they have become as tame and unsuspicious as domestic fowls In North America. Where they are constantly hunted they often conceal their nests in the midst of weeds or bushes, but in Iceland, they make their nests and deposit their eggs in holes dug for them in the sod.” The price of down is never mentioned in the passage, and while feathers and down are both mentioned, they are not compared. Similarly, the use of eider down in bedding is mentioned, but its use in North America and in Iceland isn’t compared. Finally, while ducks that nest on the Labrador coast and ducks that nest in Iceland are each described, they are not directly compared.
Example Question #4 : Main Idea, Details, Opinions, And Arguments In Narrative Science Passages
"Abstraction in the Sciences" by Matthew Minerd (2014)
Thinking “abstractly” is not a term that means quite the same thing in all of the sciences. Although we rarely think about this, it plays a key role in almost all of our day-to-day thought. Consider a zoologist working in a lab with many animals. When she is studying any individual tiger, she is not completely worried about the particular tiger—at least not primarily. Instead, she is trying to figure out certain characteristics of tigers in general. By meticulous testing, the zoologist carefully works out the physiology of tigers and considers what are absolutely necessary elements of their physical makeup. Even when she places a tiger in different habitats, her sight is aimed at the general condition of tigers and their needs in general.
However, things become even stranger when you start to consider how we think about mathematical objects. Consider the case of geometric figures. A triangle appears to be rather simple for most of us to think about. You can draw a triangle on a piece of paper, each side having a certain thickness and length. However when you think about this in geometry class, the triangle’s edges have no real thickness. Neither a point nor a line has a thickness for the mathematician. Such a thickness only exists on our paper, which represents the point or line. Consider also a line drawn on a piece of graph paper. Technically, there are an infinite number of points in the line. Indeed, even between 4.5 and 4.6, there are an infinite number of numbers—for example 4.55 is between them, then 4.555 between 4.55 and 4.6, and 4.5555 between 4.555 and 4.6, et cetera. In all of these cases, the mathematical reality takes on a very peculiar character when you consider it in the abstract. However, the concrete triangle remains very tangible and ordinary. Likewise, 4.6 and 4.5 inches still have 0.1 inches between them. Nevertheless, in the abstract, mathematical realities are quite strange, even stranger then the idea of “a tiger in general.”
What are the two things being contrasted in the first paragraph?
Captive tigers and wild tigers
Living tigers and ancient tigers
Captive tigers in general and scientifically tested captive tigers
Individual tigers and the general properties of tigers
None of the other answers
Individual tigers and the general properties of tigers
The first paragraph is focusing on the strange way that a scientist can consider "tigers in general." She is not so much concerned with any particular tiger as much as she is with the general "makeup" of tigers. These two ways of looking at the matter are the most directly contrasted point in this paragraph.
Example Question #5 : Textual Relationships In Science Passages
Adapted from The Story of Eclipses by George F. Chambers (1900)
Observations of total solar eclipses during the nineteenth century have been, for the most part, carried out under circumstances so essentially different from everything that has gone before, that not only does a new chapter seem desirable but also a new form of treatment. Up to the beginning of the eighteenth century, the observations (even the best of them) may be said to have been made and recorded with but few exceptions by unskilled observers with no clear ideas as to what they should look for and what they might expect to see. Things improved a little during the eighteenth century, and the observations by Halley, Maclaurin, Bradley, Don Antonio Ulloa, Sir W. Herschel, and others in particular rose to a much higher standard than any that had preceded them. However, it has only been during the nineteenth century, and especially during the latter half of it, that total eclipses of the sun have been observed under circumstances calculated to extract from them large and solid extensions of scientific knowledge.
The total eclipse of July 28, 1851, may be said to have been the first which was the subject of an “Eclipse Expedition,” a phrase which of late years has become exceedingly familiar. The total phase was visible in Norway and Sweden, and great numbers of astronomers from all parts of Europe flocked to those countries. The red flames were very much in evidence, and the fact that they belonged to the sun and not to the moon was clearly established. Hind mentions that “the aspect of Nature during the total eclipse was grand beyond description.” This feature is dwelt upon with more than usual emphasis in many of the published accounts. I have never seen it suggested that the mountainous character of the country may have had something to do with it, but that idea would seem not improbable.
In the year 1858, two central eclipses of the sun occurred, both presenting some features of interest. That of March 15 was annular, the central line passing across England. The weather generally was unfavorable and the annular phase was only observed at a few places, but important meteorological observations were made and yielded results, as regards the diminution of temperature, which were very definite.
According to the author what was the primary difference between observations made before the eighteenth century and observations made during and after the eighteenth century?
Observers before the eighteenth century were primarily concerned with the religious implications of eclipses.
Observers before the eighteenth century did not really know what they were doing.
Observers after the eighteenth century were much more competitive and less willing to work together.
Observers after the eighteenth century employed less scientific means of enquiry.
Observers before the eighteenth century were funded by the royal families of Europe.
Observers before the eighteenth century did not really know what they were doing.
Answering this question requires you to read the first paragraph carefully in detail. The author says, “Up to the beginning of the eighteenth century, the observations (even the best of them) may be said to have been made and recorded with but few exceptions by unskilled observers with no clear ideas as to what they should look for and what they might expect to see.” The author calls the observers before the eighteenth century “unskilled” and having “no clear ideas as to what they should look for.” The author could thus be reasonably paraphrased as saying that those earlier observers “did not really know what they were doing.”