ISEE Middle Level Math : Trapezoids

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Area Of A Trapezoid

Trapezoid

 

What is the area of the above trapezoid?

Possible Answers:

\displaystyle 142.04\textrm{ m}^{2}

\displaystyle 109.18\textrm{ m}^{2}

\displaystyle 218.36\textrm{ m}^{2}

\displaystyle 76.32\textrm{ m}^{2}

\displaystyle 96.48\textrm{ m}^{2}

Correct answer:

\displaystyle 109.18\textrm{ m}^{2}

Explanation:

To find the area of a trapezoid, multiply one half (or 0.5, since we are working with decimals) by the sum of the lengths of its bases (the parallel sides) by its height (the perpendicular distance between the bases). This quantity is

\displaystyle A = 0.5 \cdot (7.2 + 13.4) \cdot 10.6 =0.5 \cdot 20.6 \cdot 10.6 = 109.18\textrm{ m}^{2}

Example Question #1 : How To Find The Area Of A Trapezoid

Find the area of the trapezoid:

Question_7

Possible Answers:

\displaystyle 49

\displaystyle 56

\displaystyle 35

\displaystyle 28

Correct answer:

\displaystyle 28

Explanation:

The area of a trapezoid can be determined using the equation \displaystyle A=\frac{1}{2}(b_1+b_2)h.

\displaystyle A=\frac{1}{2}(6+8)(4)

\displaystyle A=\frac{1}{2}(14)(4)

\displaystyle A=(7)(4)=28

Example Question #1 : How To Find The Area Of A Trapezoid

Trapezoid

 

What is the area of the trapezoid?

Possible Answers:

\displaystyle 135\textrm{ m}^{2}

\displaystyle 99\textrm{ m}^{2}

\displaystyle 63\textrm{ m}^{2}

\displaystyle 105\textrm{ m}^{2}

\displaystyle 198\textrm{ m}^{2}

Correct answer:

\displaystyle 99\textrm{ m}^{2}

Explanation:

To find the area of a trapezoid, multiply the sum of the bases (the parallel sides) by the height (the perpendicular distance between the bases), and then divide by 2.

\displaystyle A = \frac{1}{2} \cdot (7 + 15) \cdot 9 = \frac{1}{2} \cdot 22 \cdot 9 = 99 \textrm{ m}^2

Example Question #2 : How To Find The Area Of A Trapezoid

Trapezoid

The above diagram depicts a rectangle \displaystyle RECT with isosceles triangle \displaystyle \Delta ECM. If \displaystyle M is the midpoint of \displaystyle \overline{CT}, and the area of the orange region is \displaystyle 72, then what is the length of one leg of \displaystyle \Delta ECM ?

Possible Answers:

\displaystyle \sqrt {108}

\displaystyle \sqrt {54}

\displaystyle \sqrt {96}

\displaystyle 6

\displaystyle \sqrt {48}

Correct answer:

\displaystyle \sqrt {48}

Explanation:

The length of a leg of \displaystyle \Delta ECM is equal to the height of the orange region, which is a trapezoid. Call this length/height \displaystyle h.

Since the triangle is isosceles, then \displaystyle CM = h, and since \displaystyle M is the midpoint of \displaystyle \overline{CT}, \displaystyle MT = h. Also, since opposite sides of a rectangle are congruent, 

\displaystyle RE = CT = CM + MT = h + h = 2h

Therefore, the orange region is a trapezoid with bases \displaystyle h and \displaystyle 2h and height \displaystyle h. Its area is 72, so we can set up and solve this equation using the area formula for a trapezoid:

 \displaystyle \frac{1}{2} (B + b)h = 72

\displaystyle \frac{1}{2} (2h + h)h = 72

\displaystyle \frac{1}{2} (3h )h = 72

\displaystyle \frac{3}{2}h^{2} = 72

\displaystyle \frac{3}{2}h^{2} \cdot \frac{2}{3} = 72 \cdot \frac{2}{3}

\displaystyle h^{2}= 48

\displaystyle h = \sqrt {48}

This is the length of one leg of the triangle.

Example Question #391 : Ssat Middle Level Quantitative (Math)

A trapezoid has a height of \displaystyle 25 inches and bases measuring \displaystyle 24 inches and \displaystyle 36 inches. What is its area?

Possible Answers:

\displaystyle 600\; \textrm{in}^{2}

\displaystyle 1,500\; \textrm{in}^{2}

\displaystyle 864\; \textrm{in}^{2}

\displaystyle 900\; \textrm{in}^{2}

\displaystyle 750\; \textrm{in}^{2}

Correct answer:

\displaystyle 750\; \textrm{in}^{2}

Explanation:

Use the following formula, with \displaystyle B = 36,b = 24,h=25:

\displaystyle A = \frac{1}{2} (B+b)h = \frac{1}{2} (36+24) \cdot 25 = 750

Example Question #1 : How To Find The Area Of A Trapezoid

Find the area of a trapezoid with bases equal to 7 and 9 and height is 2.

Possible Answers:

\displaystyle 8

\displaystyle 126

\displaystyle 63

\displaystyle 16

Correct answer:

\displaystyle 16

Explanation:

To solve, simply use the formula for the area of a trapezoid.

 

\displaystyle b1=7, b2=9, h=2

Thus,

\displaystyle A=\frac{1}{2}(b1+b2)h=\frac{1}{2}(7+9)(2)=16

Example Question #1 : How To Find The Area Of A Trapezoid

Find the area of a trapezoid with bases of 10 centimeters and 8 centimeters, and a height of 4 centimeters.

Possible Answers:

\displaystyle 36cm^{2}

\displaystyle 56cm^{2}

\displaystyle 72cm^{2}

\displaystyle 112cm^{2}

Correct answer:

\displaystyle 36cm^{2}

Explanation:

The formula for area of a trapezoid is:

\displaystyle A=\frac{1}{2} (b_{1}+b_{2}) \times h

 where

\displaystyle b_1=10, b_2=8, h=4

 

therefore the area equation becomes,

\displaystyle A = \frac{1}{2} (10 + 8) \times 4

\displaystyle A = \frac{1}{2} (72)

\displaystyle A = 36cm^{2}

Example Question #3 : How To Find The Area Of A Trapezoid

You recently bought a new bookshelf with a base in  the shape of an isosceles trapezoid. If the small base is 2 feet, the large base is 3 feet, and the depth is 8 inches, what is the area of the base of your new bookshelf?

Possible Answers:

Cannot be determined from the information provided.

\displaystyle \frac{5}{2}ft^2

\displaystyle \frac{3}{5}ft^2

\displaystyle \frac{5}{3}ft^2

Correct answer:

\displaystyle \frac{5}{3}ft^2

Explanation:

You recently bought a new bookshelf with a base in  the shape of an isosceles trapezoid. If the small base is 2 feet, the large base is 3 feet, and the depth is 8 inches, what is the area of the base of your new bookshelf?

To find the area of a trapezoid, we need to use the following formula:

\displaystyle A_{trapezoid}=\frac{a+b}{2}*h

Where a and b are the lengths of the bases, and h is the perpendicular distance from one base to another.

We are given a and b, and then h will be the same as our depth. The tricky part is realizing that our depth is in inches, while our base lengths are in feet. We need to convert 8 inches to feet:

\displaystyle 8in*\frac{1ft}{12in}=\frac{8}{12}=\frac{2}{3}ft

Next, plug it all into our equation up above.

\displaystyle A_{trapezoid}=\frac{2+3}{2}*\frac{2}{3}=\frac{5}{2}*\frac{2}{3}

\displaystyle \frac{5}{2}*\frac{2}{3}=\frac{5}{3}ft^2

So our answer is:

\displaystyle \frac{5}{3}ft^2

Example Question #1 : How To Find The Area Of A Trapezoid

Rectangles 3

The above diagram shows Rectangle \displaystyle RECT, with midpoint \displaystyle M of \displaystyle \overline{CT}.

The area of Quadrilateral \displaystyle REMT is \displaystyle 1,200. Evaluate \displaystyle x.

Possible Answers:

\displaystyle 20

\displaystyle 60

\displaystyle 40

\displaystyle 30

Correct answer:

\displaystyle 40

Explanation:

The easiest way to see this problem is to note that Quadrilateral \displaystyle REMT has as its area that of Rectangle \displaystyle RECT minus that of \displaystyle \bigtriangleup ECM.

The area of Rectangle \displaystyle RECT is its length multiplied by its width:

\displaystyle 2x \cdot \frac{1}{2} x = 2 \cdot \frac{1}{2} \cdot x \cdot x = x^{2}

\displaystyle M is the midpoint of \displaystyle \overline{CT}, so \displaystyle \bigtriangleup ECM has as its base and height \displaystyle \frac{1}{2} \cdot 2x =x and \displaystyle \frac{1}{2} x, respectively; 

its area is half their product, or 

\displaystyle \frac{1}{2} \cdot x \cdot \frac{1}{2} x = \frac{1}{4} x^{2}

The area of  Quadrilateral \displaystyle REMT is 

\displaystyle x^{2} - \frac{1}{4} x^{2} = \frac{3}{4} x^{2} = 1,200, so

\displaystyle \frac{3}{4} x^{2} \cdot \frac{4} {3} = 1,200\cdot \frac{4} {3}

\displaystyle x^{2} = 1,600

\displaystyle x =\sqrt{ 1,600} = 40

Example Question #1 : Trapezoids

The perimeter of the following trapezoid is equal to 23 cm. Solve for \displaystyle x. (Figure not drawn to scale.)

Isee_mid_question_52

Possible Answers:

\displaystyle x=4

\displaystyle x=8

\displaystyle x=12

\displaystyle x=2

Correct answer:

\displaystyle x=4

Explanation:

The perimeter is equal to the sum of all of the sides.

\displaystyle P=23\: cm

\displaystyle P=23\: cm=5+6+x+2x

\displaystyle 23=11+3x

\displaystyle 23-11=11+3x-11

\displaystyle 12=3x

\displaystyle \frac{12}{3}=\frac{3x}{3}

\displaystyle x=4

Learning Tools by Varsity Tutors