Intermediate Geometry : Circles

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Circles

A circle has center \displaystyle (7, -4 ) and radius 9. Which of the following is the standard form of the equation of the circle?

Possible Answers:

\displaystyle (x+ 7) ^{2} + (y- 4) ^{2} = 81

\displaystyle (x+ 7) ^{2} + (y- 4) ^{2} = 9

None of the other choices gives the correct response.

\displaystyle (x+ 7) ^{2} + (y- 4) ^{2} = 9

\displaystyle (x- 7) ^{2} + (y+4) ^{2} = 81

Correct answer:

\displaystyle (x- 7) ^{2} + (y+4) ^{2} = 81

Explanation:

The standard form of the equation of the circle with center at \displaystyle (h, k) and radius \displaystyle r is 

\displaystyle (x-h)^{2}+ (y-h)^{2} = r^{2}

Set \displaystyle h = 7, k = - 4 , r =9: the correct equation is

\displaystyle ( x-7) ^{2}+ [y-(-4)]^{2} = 9 ^{2}

or 

\displaystyle (x-7) ^{2}+ (y+4)^{2} = 81

Example Question #32 : How To Find The Equation Of A Circle

Give the radius of the circle of the equation

\displaystyle x^{2}+y^{2}+6x-12y+9=0.

Possible Answers:

\displaystyle 10

\displaystyle 4

\displaystyle 8

\displaystyle 6

\displaystyle 2

Correct answer:

\displaystyle 6

Explanation:

Rewrite the equation of the circle in the form

\displaystyle (x-h)^{2}+ (y-h)^{2} = r^{2}

The radius of the circle will be \displaystyle r.

Move the constant to the right by subtracting 9 from both sides; also, reorganize the variable terms at left so as to place \displaystyle x- and \displaystyle y-terms together:

\displaystyle x^{2}+y^{2}+6x-12y+9=0

\displaystyle x^{2}+y^{2}+6x-12y+9 - 9 =0 - 9

\displaystyle x^{2}+6x +y^{2}-12y = -9

Next, complete the squares. First, we will put blanks after the second and fourth terms (grouping for the sake of readability:

\displaystyle \left (x^{2}+6x+ \underline{\; \; \; \; \; \; \; } \right )+\left (y^{2}-12y + \underline{\; \; \; \; \; \; \; } \right )= -9

The blanks will be filled with numbers that will complete two perfect square trinomials. In the first blank will be the square of half of 6, which is

\displaystyle \left ( \frac{6}{2} \right )^{2} = 3^{2} = 9;

in the second blank, the square of half of \displaystyle -12, which is 

\displaystyle \left ( \frac{-12}{2} \right )^{2} = 6^{2} = 36

Add these numbers to both sides:

\displaystyle (x^{2}+6x+9)+(y^{2}-12y + 36) = -9 + 9 + 36

\displaystyle (x^{2}+6x+9)+(y^{2}-12y + 36)= 36

By construction, the trinomials are perfect squares of binomials, and the expression can be rewritten as:

\displaystyle (x +3)^{2}+(y-6) ^{2}= 36

or, since the positive square root of 36 is 6,

\displaystyle (x +3)^{2}+(y-6) ^{2}= 6^{2}

Therefore, \displaystyle r= 6, the radius of the circle.

Example Question #31 : Circles

Circle

Give the equation of the above circle.

Possible Answers:

\displaystyle (x+6)^{2}+ (y+6)^{2} = 6

\displaystyle (x-6)^{2}+ (y-6)^{2} = 36

\displaystyle (x+6)^{2}+ (y+6)^{2} = 36

\displaystyle (x-6)^{2}+ (y-6)^{2} = 6

\displaystyle (x-6)^{2}+y^{2} = 36

Correct answer:

\displaystyle (x-6)^{2}+ (y-6)^{2} = 36

Explanation:

The general form of a circle with its center at point \displaystyle (h,k) and with radius \displaystyle r is 

\displaystyle (x-h)^{2}+ (y-k)^{2} = r^{2}.

Examine the diagram below:

Circle

The center of the circle is \displaystyle (6,6) and the radius is 6, so set \displaystyle h =k= r = 6 in the circle equation:

\displaystyle (x-6)^{2}+ (y-6)^{2} = 6^{2}

or

\displaystyle (x-6)^{2}+ (y-6)^{2} = 36

Example Question #34 : Circles

Circle

Give the equation of the circle in the above diagram.

Possible Answers:

\displaystyle \left (x+ \frac{9}{2} \right )^{2}+ \left (y+ \frac{9}{2} \right )^{2} = \frac{81}{4}

\displaystyle \left (x- \frac{9}{2} \right )^{2}+ y^{2} = \frac{81}{4}

\displaystyle x^{2}+ \left (y- \frac{9}{2} \right )^{2} = \frac{81}{4}

\displaystyle \left (x+ \frac{9}{2} \right )^{2}+ y^{2} = \frac{81}{4}

\displaystyle x^{2}+ \left (y+ \frac{9}{2} \right )^{2} = \frac{81}{4}

Correct answer:

\displaystyle x^{2}+ \left (y+ \frac{9}{2} \right )^{2} = \frac{81}{4}

Explanation:

The general form of a circle with its center at point \displaystyle (h,k) and with radius \displaystyle r is 

\displaystyle (x-h)^{2}+ (y-k)^{2} = r^{2}.

The segment with endpoints at the origin and \displaystyle (0, -9) is a diameter of the circle, so the circle has diameter 9, and its radius is half this, or \displaystyle -\frac{9}{2}. The center of the circle is the midpoint of this segment, which is at \displaystyle \left ( 0, -\frac{9}{2} \right ).

The diagram showing the center is below.

Circle

 

Set \displaystyle h = 0 , k = -\frac{9}{2}, r = \frac{9}{2}. The equation is

\displaystyle \left [x-0 \right ]^{2}+\left[ y-\left ( - \frac{9}{2} \right ) \right]^{2} = \left ( \frac{9}{2} \right )^{2}

or

.\displaystyle x^{2}+ \left (y+ \frac{9}{2} \right )^{2} = \frac{81}{4}

Example Question #34 : How To Find The Equation Of A Circle

\displaystyle x^{2}+y^{2}+6x-12y+9=0.

Possible Answers:

\displaystyle (3, 6)

\displaystyle (3, -6)

\displaystyle (-3, -6)

\displaystyle (-3, 6)

Correct answer:

\displaystyle (-3, 6)

Explanation:

Rewrite the equation of the circle in the form

\displaystyle (x-h)^{2}+ (y-h)^{2} = r^{2}

The coordinates of the center of the circle will be \displaystyle (h, k).

Move the constant to the right by subtracting 9 from both sides; also, reorganize the variable terms at left so as to place \displaystyle x- and \displaystyle y-terms together:

\displaystyle x^{2}+y^{2}+6x-12y+9=0

\displaystyle x^{2}+y^{2}+6x-12y+9 - 9 =0 - 9

\displaystyle x^{2}+6x +y^{2}-12y = -9

Next, complete the squares. First, we will put blanks after the second and fourth terms (grouping for the sake of readability:

\displaystyle \left (x^{2}+6x+ \underline{\; \; \; \; \; \; \; } \right )+\left (y^{2}-12y + \underline{\; \; \; \; \; \; \; } \right )= -9

The blanks will be filled with numbers that will complete two perfect square trinomials. In the first blank will be the square of half of 6, which is

\displaystyle \left ( \frac{6}{2} \right )^{2} = 3^{2} = 9;

in the second blank, the square of half of \displaystyle -12, which is 

\displaystyle \left ( \frac{-12}{2} \right )^{2} = 6^{2} = 36

Add these numbers to both sides:

\displaystyle (x^{2}+6x+9)+(y^{2}-12y + 36) = -9 + 9 + 36

\displaystyle (x^{2}+6x+9)+(y^{2}-12y + 36)= 36

By construction, the trinomials are perfect squares of binomials, and the expression can be rewritten as:

\displaystyle (x +3)^{2}+(y-6) ^{2}= 36

or, since the positive square root of 36 is 6,

\displaystyle (x +3)^{2}+(y-6) ^{2}= 6^{2}

The center of the circle is located at the point \displaystyle (-3, 6).

Example Question #36 : Circles

A circle has center \displaystyle (-3, 8 ) and radius \displaystyle 7. Which of the following is the general form of the equation of the circle?

Possible Answers:

\displaystyle x^{2}+ y^{2} - 6x + 16y+24 =0

\displaystyle x^{2}+ y^{2} - 6x + 16y+66 =0

\displaystyle x^{2}+ y^{2}+ 6x - 16y +24 =0

\displaystyle x^{2}+ y^{2} + 6x - 16y+66 =0

Correct answer:

\displaystyle x^{2}+ y^{2}+ 6x - 16y +24 =0

Explanation:

First, write the standard form of the equation of the circle, which, if it has center at \displaystyle (h, k) and radius \displaystyle r, is 

\displaystyle (x-h)^{2}+ (y-h)^{2} = r^{2}

Set \displaystyle h= -3,k= 8, r =7 - the equation is

\displaystyle [(x- (-3)]^{2}+( y- 8 )^{2} = 7^{2}

or

\displaystyle (x+3)^{2}+ ( y-8 ) ^{2} = 7^{2}

The general form of the equation of a circle is

\displaystyle x^{2}+ y^{2}+ Ax + By+ C = 0 

for some real values of \displaystyle A,B,C.

Expand the squares of the binomials according to the binomial square pattern:

\displaystyle (x^{2} +2 \cdot x \cdot 3 +3^{2})+(y^{2}- 2 \cdot y \cdot 8 +8 ^{2} )= 7^{2}

\displaystyle (x^{2}+ 6x +9 )+(y^{2}-16y +64 )=49

Rearrange and collect like terms:

\displaystyle x^{2}+ 6x +9 + y^{2}-16y +64 =49

\displaystyle x^{2}+ y^{2} +6x - 16y+9 +64 =49

\displaystyle x^{2}+ y^{2}+ 6x - 16y+73 =49

Subtract 49 from both sides:

\displaystyle x^{2}+ y^{2}+ 6x - 16y+73 -49 =49 - 49

\displaystyle x^{2}+ y^{2}+ 6x - 16y +24 =0,

the general form of the equation.

Example Question #351 : Coordinate Geometry

Circle

Give the equation of the given circle.

Possible Answers:

\displaystyle (x - 4 )^{2}+( y- 9) ^{2}= 97

\displaystyle x^{2}+ y^{2}= 13

\displaystyle x^{2}+ y^{2}= 97

\displaystyle (x - 4 )^{2}+( y- 9) ^{2}= 13

Correct answer:

\displaystyle x^{2}+ y^{2}= 97

Explanation:

The general form of a circle with its center at the origin is

\displaystyle x^{2}+ y^{2} = r^{2}

The easiest way to determine the value of \displaystyle r^{2}, given that the point \displaystyle (4, 9 ) is on the graph, is simply to substitute the values:

\displaystyle 4^{2}+ 9^{2} = r^{2}

\displaystyle 16+81 = r^{2}

\displaystyle 97= r^{2}

The equation of the circle is

\displaystyle x^{2}+ y^{2} = 97.

Learning Tools by Varsity Tutors