High School Physics : Using Circular Motion Equations

Study concepts, example questions & explanations for High School Physics

varsity tutors app store varsity tutors android store

Example Questions

Example Question #186 : Motion And Mechanics

What is the angular velocity of an object rotating at \displaystyle 31\frac{rev}{s}?

Possible Answers:

\displaystyle 11160\frac{rad}{s}

\displaystyle 9.87\frac{rad}{s}

\displaystyle 31\frac{rad}{s}

\displaystyle 194.78\frac{rad}{s}

\displaystyle 97.39\frac{rad}{s}

Correct answer:

\displaystyle 194.78\frac{rad}{s}

Explanation:

The problem gives us a value in terms of revolutions per second, but we need radians per second.

Remember that \displaystyle 1rev=2\pi rad so we can convert:

\displaystyle 31\frac{rev}{s}*\frac{2\pi rad}{1rev}=62\pi\frac{rad}{s}=194.78\frac{rad}{s}

Example Question #187 : Motion And Mechanics

A \displaystyle 1.5kg baseball has a radius of \displaystyle 0.038m. If it spins at a rate of \displaystyle 65\frac{rev}{s}, what is its angular momentum?

\displaystyle I_{sphere}=\frac{2}{5}mr^2

Possible Answers:

\displaystyle 0.36J*m

\displaystyle 0.06J*m

\displaystyle 0.88J*m

\displaystyle 0.11J*m

There is insufficient information to solve

Correct answer:

\displaystyle 0.36J*m

Explanation:

The formula for angular momentum is:

\displaystyle L=I\omega

We need to find values for the moment of inertia and the angular velocity in order to find the angular momentum.

The given equation for moment of inertia is:

\displaystyle I_{sphere}=\frac{2}{5}mr^2

Use the given values for the mass and radius of the ball to solve for the moment of inertia.

\displaystyle I=\frac{2}{5}mr^2

\displaystyle I=\frac{2}{5}(1.5kg)(0.038m)^2

\displaystyle I=8.7*10^{-4}kg*m^2

Now we need to find the angular velocity. The problem gives us a value in terms of revolutions per second, but we need radians per second.

Remember that \displaystyle 1rev=2\pi rad so we can convert:

\displaystyle 65\frac{rev}{s}*\frac{2\pi rad}{1rev}=130\pi\frac{rad}{s}=408.4\frac{rad}{s}

Now we can use our values for angular velocity and moment of inertia in the equation for angular momentum.

\displaystyle L=I\omega

\displaystyle L=(8.7*10^{-4}kg*m^2)(408.4\frac{rad}{s})

\displaystyle L=0.36J*m

Example Question #31 : Using Circular Motion Equations

A ball of mass \displaystyle \small 2.34kg is tied to a massless string of length \displaystyle \small 3m and swings in a circular motion moving at \displaystyle \small 5.2\frac{m}{s}. What is the tension in the string?

Possible Answers:

\displaystyle 6.67N

\displaystyle 21.09N

\displaystyle 4.056N

\displaystyle 36.50N

\displaystyle 10.54N

Correct answer:

\displaystyle 21.09N

Explanation:

The tension in the string will be equal to the centripetal force on the ball.

\displaystyle F_c=F_T

Centripetal force is given by the formula:

\displaystyle F_c=m\frac{v^2}{r}

We are given the mass of the ball, its velocity, and the length of the string, which will determine the radius.

\displaystyle F_c=(2.34kg)\frac{(5.2\frac{m}{s})^2}{3m}

\displaystyle F_c=(2.34kg)(9.01\frac{m}{s^2})

\displaystyle F_c=21.09N

Since the centripetal force and force of tension will be equal, this is our answer.

\displaystyle F_c=F_T=21.09N

Example Question #189 : Motion And Mechanics

A \displaystyle 2.2kg object is moving in a perfect circle with a radius of \displaystyle 3.1m and has a linear momentum of \displaystyle 35\frac{kg*m}{s}.

What is the angular velocity of the object?

Possible Answers:

\displaystyle 49.32\frac{rad}{s}

\displaystyle 5.13\frac{rad}{s}

\displaystyle 0.19\frac{rad}{s}

\displaystyle 12.81\frac{rad}{s}

\displaystyle 15.91\frac{rad}{s}

Correct answer:

\displaystyle 5.13\frac{rad}{s}

Explanation:

The relationship between linear and angular velocity is:

\displaystyle \omega=\frac{v}{r}

We know the radius, but we need to find the linear velocity. Fortunately, that's contained in the linear momentum. We know both the momentum and the mass, so we can find the linear velocity.

\displaystyle p=m*v

\displaystyle 35\frac{kg*m}{s}=(2.2kg)v

\displaystyle \frac{35\frac{kg*m}{s}}{2.2kg}=v

\displaystyle 15.91\frac{m}{s}=v

Plug that into our initial equation, along with the radius, to convert it to angular velocity.

\displaystyle \omega=\frac{15.91\frac{m}{s}}{3.1m}

\displaystyle \omega=5.13\frac{rad}{s}

Example Question #43 : Circular Motion

A \displaystyle 2.2kg object is moving in a perfect circle with a radius of \displaystyle 3.1m and has a linear momentum of \displaystyle 35\frac{kg*m}{s}.

What is the centripetal acceleration on the object?

Possible Answers:

\displaystyle 253.13\frac{m}{s^2}

\displaystyle 81.65\frac{m}{s^2}

\displaystyle 26.34\frac{m}{s^2}

\displaystyle 5.13\frac{m}{s^2}

\displaystyle 49.32\frac{m}{s^2}

Correct answer:

\displaystyle 81.65\frac{m}{s^2}

Explanation:

Centripetal acceleration is equal to the tangential velocity squared over the radius:

\displaystyle a_c=\frac{v^2}{r}

We know the radius, but we need to find the linear velocity. Fortunately, that's contained in the linear momentum. We know both the momentum and the mass, so we can find the linear velocity.

\displaystyle p=m*v

\displaystyle 35\frac{kg*m}{s}=(2.2kg)v

\displaystyle \frac{35\frac{kg*m}{s}}{2.2kg}=v

\displaystyle 15.91\frac{m}{s}=v

Use the linear velocity and the radius in the initial equation to solve for the centripetal acceleration.

\displaystyle a_c=\frac{v^2}{r}

\displaystyle a_c=\frac{(15.91\frac{m}{s})^2}{3.1m}

\displaystyle a_c=\frac{253.128\frac{m^2}{s^2}}{3.1m}

\displaystyle a_c=81.65\frac{m}{s^2}

Example Question #253 : High School Physics

A \displaystyle 2.2kg object is moving in a perfect circle with a radius of \displaystyle 3.1m and has a linear momentum of \displaystyle 35\frac{kg*m}{s}.

What is the angular momentum of the object?

Possible Answers:

\displaystyle 5.13\,J*s

\displaystyle 179.63\,J*s

\displaystyle 11.29\,J*s

\displaystyle 57.9\,J*s

\displaystyle 108.5\,J*s

Correct answer:

\displaystyle 108.5\,J*s

Explanation:

There is a direct relationship between angular momentum and linear momentum. Angular momentum is equal to the linear momentum times the radius:

\displaystyle L=p*r

We are given the value of both the linear momentum and the radius, allowing us to solve for the angular momentum.

\displaystyle L=(35kg*\frac{m}{s})(3.1m)

\displaystyle L=108.5\,J*s

Example Question #51 : Circular Motion

A \displaystyle 2.2kg object is moving in a perfect circle with a radius of \displaystyle 3.1m and has a linear momentum of \displaystyle 35\frac{kg*m}{s}.

What is the moment of inertia on this object?

Possible Answers:

\displaystyle 21.14kg*m^2

\displaystyle 5.13kg*m^2

\displaystyle 9.61kg*m^2

\displaystyle 6.82kg*m^2

\displaystyle 15kg*m^2

Correct answer:

\displaystyle 21.14kg*m^2

Explanation:

Since the object is moving in a perfect circle and not rotating about some fixed point within itself (like spinning a ball or a frisbee), the equation for moment of inertia is:

\displaystyle I=mr^2

We are given the mass and radius, allowing us to calculate the moment of inertia from this equation.

\displaystyle I=(2.2kg)(3.1m)^2

\displaystyle I=(2.2kg)(9.61m^2)

\displaystyle I=21.14kg*m^2

Example Question #261 : High School Physics

A \displaystyle 2.2kg object is moving in a perfect circle with a radius of \displaystyle 3.1m and has a linear momentum of \displaystyle 35\frac{kg*m}{s}.

What is the period of the object's orbit?

Possible Answers:

\displaystyle 0.82s

\displaystyle 0.61s

\displaystyle 1.5s

\displaystyle 1.22s

\displaystyle 0.39s

Correct answer:

\displaystyle 1.22s

Explanation:

The relationship between period and angular velocity is:

\displaystyle \omega=\frac{2\pi}{T}

The relationship between linear and angular velocity is:

\displaystyle \omega=\frac{v}{r}

We know the radius, but we need to find the linear velocity. Fortunately, that's contained in the linear momentum. We know both the momentum and the mass, so we can find the linear velocity.

\displaystyle p=m*v

\displaystyle 35\frac{kg*m}{s}=(2.2kg)v

\displaystyle \frac{35\frac{kg*m}{s}}{2.2kg}=v

\displaystyle 15.91\frac{m}{s}=v

Plug that into the equation for angular velocity, along with the radius.

\displaystyle \omega=\frac{15.91\frac{m}{s}}{3.1m}

\displaystyle \omega=5.13\frac{rad}{s}

Plug this term back into the initial equation to solve for the period.

\displaystyle \omega=\frac{2\pi}{T}

\displaystyle 5.13\frac{rad}{s}=\frac{2\pi}{T}

\displaystyle T=\frac{2\pi}{5.13\frac{rad}{s}}

\displaystyle T=1.22s

Example Question #53 : Circular Motion

A \displaystyle 2.2kg object is moving in a perfect circle with a radius of \displaystyle 3.1m and has a linear momentum of \displaystyle 35\frac{kg*m}{s}.

What is the angular displacement of the object after \displaystyle 5s?

Possible Answers:

\displaystyle 161.16rad

\displaystyle 9234rad

\displaystyle 26.65rad

\displaystyle 4.08rad

\displaystyle 79.55rad

Correct answer:

\displaystyle 26.65rad

Explanation:

Angular displacement is equal to the angular velocity times time:

\displaystyle \theta=\omega*\Delta t

We know the time, but we need to solve for the angular velocity. The relationship between linear and angular velocity is:

\displaystyle \omega=\frac{v}{r}

We know the radius, but we need to find the linear velocity. Fortunately, that's contained in the linear momentum. We know both the momentum and the mass, so we can find the linear velocity.

\displaystyle p=m*v

\displaystyle 35\frac{kg*m}{s}=(2.2kg)v

\displaystyle \frac{35\frac{kg*m}{s}}{2.2kg}=v

\displaystyle 15.91\frac{m}{s}=v

Plug that into the equation for angular velocity, along with the radius.

\displaystyle \omega=\frac{15.91\frac{m}{s}}{3.1m}

\displaystyle \omega=5.13\frac{rad}{s}

Now that we have the angular velocity, we can solve for the angular displacement at the given time.

\displaystyle \theta=\omega *\Delta t

\displaystyle \theta=5.13\frac{rad}{s}*5s

\displaystyle \theta=26.65rad

Example Question #54 : Circular Motion

A \displaystyle 2.2kg object is moving in a perfect circle with a radius of \displaystyle 3.1m and has a linear momentum of \displaystyle 35\frac{kg*m}{s}.

How many revolutions does the object go through in \displaystyle 14s?

Possible Answers:

\displaystyle 17.08\, rev

\displaystyle 0.09\, rev

\displaystyle 11.48\, rev

\displaystyle 72.1 \, rev

\displaystyle 1.22\, rev

Correct answer:

\displaystyle 11.48\, rev

Explanation:

We can set up a proportion here:

\displaystyle \frac{1rev}{T}=\frac{x\, rev}{14s}.

In other words, the object can do one revolution per period (\displaystyle T), so it can do \displaystyle x revolutions in \displaystyle 14s. First we need to find the period.

The relationship between period and angular velocity is:

\displaystyle \omega=\frac{2\pi}{T}

The relationship between linear and angular velocity is:

\displaystyle \omega=\frac{v}{r}

We know the radius, but we need to find the linear velocity. Fortunately, that's contained in the linear momentum. We know both the momentum and the mass, so we can find the linear velocity.

\displaystyle p=m*v

\displaystyle 35\frac{kg*m}{s}=(2.2kg)v

\displaystyle \frac{35\frac{kg*m}{s}}{2.2kg}=v

\displaystyle 15.91\frac{m}{s}=v

Plug that into the equation for angular velocity, along with the radius.

\displaystyle \omega=\frac{15.91\frac{m}{s}}{3.1m}

\displaystyle \omega=5.13\frac{rad}{s}

Plug this term back into the first equation to solve for the period.

\displaystyle \omega=\frac{2\pi}{T}

\displaystyle 5.13\frac{rad}{s}=\frac{2\pi}{T}

\displaystyle T=\frac{2\pi}{5.13\frac{rad}{s}}

\displaystyle T=1.22s

Now that we know the period, we can return to the proportion to solve for the rotations completed in the given time.

\displaystyle \frac{1rev}{1.22s}=\frac{x\, rev}{14s}

Cross multiply.

\displaystyle 14\, rev*s=(1.22s)(x)

\displaystyle \frac{14\,rev*s}{1.22s}=x

\displaystyle 11.48\, rev = x

Learning Tools by Varsity Tutors