High School Math : Understanding Derivatives of Exponents

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : Calculus I — Derivatives

Find the derivative for 

Possible Answers:

Correct answer:

Explanation:

The derivative must be computed using the product rule.  Because the derivative of  brings a  down as a coefficient, it can be combined with  to give 

Example Question #1 : Specific Derivatives

Give the instantaneous rate of change of the function  at .

Possible Answers:

Correct answer:

Explanation:

The instantaneous rate of change of  at  is , so we will find  and evaluate it at .

 for any positive , so 

Example Question #73 : Calculus I — Derivatives

What is  ?

Possible Answers:

Correct answer:

Explanation:

Therefore, 

 for any real , so , and

Example Question #74 : Calculus I — Derivatives

What is  ?

Possible Answers:

Correct answer:

Explanation:

Therefore, 

 for any positive , so , and

 

 

Learning Tools by Varsity Tutors