High School Math : Pre-Calculus

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Pre Calculus

Simplify the following polynomial function:

\displaystyle ab^{-2}(a^{2}b + a^{-1}b^{3}-a^{3}b^{-1})

Possible Answers:

\displaystyle \frac{a^{3}}{b}-b+\frac{a^{4}}{b^{3}}

\displaystyle \frac{a^{3}}{b}-\frac{a^{4}}{b^{3}}

\displaystyle \frac{a^{3}}{b}+b^{2}-\frac{a^{4}}{b^{3}}

\displaystyle \frac{a^{3}}{b}+b-\frac{a^{4}}{b^{3}}

\displaystyle \frac{a^{3}}{b}+\frac{a^{4}}{b^{3}}

Correct answer:

\displaystyle \frac{a^{3}}{b}+b-\frac{a^{4}}{b^{3}}

Explanation:

First, multiply the outside term with each term within the parentheses:

\displaystyle ab^{-2}(a^{2}b + a^{-1}b^{3}-a^{3}b^{-1})

\displaystyle a^{3}b^{-1} + b-a^{4}b^{-3}

Rearranging the polynomial into fractional form, we get:

\displaystyle \frac{a^{3}}{b}+b-\frac{a^{4}}{b^{3}}

Example Question #1 : Exponential And Logarithmic Functions

You are given that \displaystyle \log_{10} x = A and \displaystyle \log_{10} y = B

Which of the following is equal to \displaystyle 100^{2A-B} ?

Possible Answers:

\displaystyle \frac{2x}{y}

\displaystyle \frac{x^{4}}{y^{2}}

\displaystyle \frac{y^{2}}{x^{4}}

\displaystyle x^{4}y^{2}

\displaystyle \frac{x}{\sqrt{y}}

Correct answer:

\displaystyle \frac{x^{4}}{y^{2}}

Explanation:

Since \displaystyle \log_{10} x = A and \displaystyle \log_{10} y = B, it follows that \displaystyle 10^{A} = x and \displaystyle 10^{B} = y

\displaystyle 100^{2A-B} = \left( 10^{2} \right ) ^{2A-B} =10^{2 (2A-B)} =10^{4A-2B}=\frac{10^{4A}}{10^{2B}} =\frac{\left ( 10^{A}\right )^4}{\left (10^{B}\right )^2}=\frac{x^4}{y^2}

Example Question #1 : Exponential And Logarithmic Functions

Possible Answers:

\displaystyle 4

\displaystyle 6

\displaystyle 16

\displaystyle 5

\displaystyle 8

Correct answer:

\displaystyle 5

Explanation:

Example Question #2 : Solving Logarithms

What is \displaystyle log_{2}(8)

Possible Answers:

\displaystyle 3

\displaystyle -4

\displaystyle -3

\displaystyle 4

\displaystyle \frac{1}{8}

Correct answer:

\displaystyle 3

Explanation:

Recall that by definition a logarithm is the inverse of the exponential function. Thus, our logarithm corresponds to the value of \displaystyle x in the equation: 

\displaystyle 2^{x} = 8

We know that \displaystyle 2^{3} = 8 and thus our answer is \displaystyle 3.

Example Question #21 : Pre Calculus

Solve for \displaystyle x\displaystyle \log_{2}\left ( x+4 \right ) + \log_{2}\left ( x+5 \right ) = \log_{2} 6

Possible Answers:

\displaystyle x = -7 \textrm{ or }x = -2

\displaystyle x = 2 \textrm{ or }x = 7

\displaystyle x = 4 \textrm{ or }x = 128

The correct solution set is not included among the other choices.

\displaystyle x = 1 \textrm{ or }x = \log_{2}7

Correct answer:

The correct solution set is not included among the other choices.

Explanation:

\displaystyle \log_{2}\left ( x+4 \right ) + \log_{2}\left ( x+5 \right ) = \log_{2} 6

\displaystyle \log_{2} \left[ \left ( x+4 \right )\left ( x+5 \right ) \right ] = \log_{2} 6

\displaystyle 2^{ \log_{2} \left[ \left ( x+4 \right )\left ( x+5 \right ) \right ] }=2^{ \log_{2} 6}

\displaystyle (x + 4)(x + 5) = 6

FOIL: \displaystyle x^{2} + 4x + 5x + 4 \cdot 5 = 6

\displaystyle x^{2} + 9x + 20 = 6

\displaystyle x^{2} + 9x + 20 - 6 = 6- 6

\displaystyle x^{2} + 9x + 14 = 0

\displaystyle (x + 2) (x + 7) = 0

\displaystyle x + 2 = 0 \textrm{ or }x + 7 = 0

\displaystyle x = -2 \textrm{ or } x = -7

These are our possible solutions. However, we need to test them.

 

\displaystyle x = -2:

\displaystyle \log_{2}\left ( x+4 \right ) + \log_{2}\left ( x+5 \right ) = \log_{2} 6

\displaystyle \log_{2}\left ( -2+4 \right ) + \log_{2}\left ( -2+5 \right ) = \log_{2} 6

\displaystyle \log_{2}2 + \log_{2}3 = \log_{2} 6

 

\displaystyle \log_{2}2 = 1

\displaystyle \log_{2}3 = \frac{\ln 3}{\ln 2} \approx \frac{1.10}{0.69} \approx 1.59

\displaystyle \log_{2}6 = \frac{\ln 6}{\ln 2} \approx \frac{1.79}{0.69} \approx 2.59

The equation becomes \displaystyle 1 + 1.59 = 2.59. This is true, so \displaystyle x = -2 is a solution.

 

\displaystyle x = -7:

\displaystyle \log_{2}\left ( x+4 \right ) + \log_{2}\left ( x+5 \right ) = \log_{2} 6

\displaystyle \log_{2}\left ( -7+4 \right ) + \log_{2}\left ( -7+5 \right ) = \log_{2} 6

\displaystyle \log_{2}\left (-3 \right ) + \log_{2}\left (-2 \right ) = \log_{2} 6

 

However, negative numbers do not have logarithms, so this equation is meaningless. \displaystyle x = -7 is not a solution, and \displaystyle x = -2 is the one and only solution. Since this is not one of our choices, the correct response is "The correct solution set is not included among the other choices."

Example Question #2 : Exponential And Logarithmic Functions

Possible Answers:

\displaystyle \frac{x^{2}y^{3}}{x^{2}}

\displaystyle \frac{xy^{3}}{z}

\displaystyle \frac{xy^{4}}{z}

\displaystyle \frac{xy^{3}}{z^{2}}

Correct answer:

\displaystyle \frac{xy^{3}}{z}

Explanation:

\displaystyle \sqrt{\frac{x^{4}y^{11}z^{5}}{x^{2}y^{5}z^{7}}} =\sqrt{\frac{x^{2}y^{6}}{z^{2}}}\:\:=\frac{xy^{3}}{z}

Example Question #1 : Sequences And Series

Evaluate: \displaystyle 1 - \frac{2}{3} + \frac{4}{9} - \frac{8}{27} + ...

Possible Answers:

\displaystyle 3

\displaystyle \frac{2}{5}

\displaystyle \frac{3}{5}

\displaystyle \frac{5}{3}

None of the other answers are correct.

Correct answer:

\displaystyle \frac{3}{5}

Explanation:

This sum can be determined using the formula for the sum of an infinite geometric series, with initial term \displaystyle a_{0} = 1 and common ratio \displaystyle r = -\frac{2}{3}:

\displaystyle S = \frac{a_{0}} {1-r} = \frac{1} {1- \left ( -\frac{2}{3}\right ) } = \frac{1} {1+ \frac{2}{3} }= \frac{1} { \frac{5}{3} } =\frac{3}{5}

Example Question #1 : Sequences And Series

The fourth term in an arithmetic sequence is -20, and the eighth term is -10. What is the hundredth term in the sequence?

Possible Answers:

210

105

110

55

220

Correct answer:

220

Explanation:

An arithmetic sequence is one in which there is a common difference between consecutive terms. For example, the sequence {2, 5, 8, 11} is an arithmetic sequence, because each term can be found by adding three to the term before it. 

Let \displaystyle a_{n} denote the nth term of the sequence. Then the following formula can be used for arithmetic sequences in general:

\displaystyle a_n=a_1 +(n-1)d, where d is the common difference between two consecutive terms. 

We are given the 4th and 8th terms in the sequence, so we can write the following equations:

\displaystyle a_4=a_1+(4-1)d=a_1+3d=-20

\displaystyle a_8=a_1+(8-1)d=a_1+7d=-10.

We now have a system of two equations with two unknowns:

\displaystyle a_1+3d=-20

\displaystyle a_1+7d=-10

Let us solve this system by subtracting the equation \displaystyle a_1+7d=-10 from the equation \displaystyle a_1+3d=-20. The result of this subtraction is

\displaystyle -4d=-10.

This means that d = 2.5.

Using the equation \displaystyle a_1+7d=-10, we can find the first term of the sequence.

\displaystyle a_1+7(2.5)=-10

\displaystyle a_1=-27.5

Ultimately, we are asked to find the hundredth term of the sequence.

\displaystyle a_{100}=a_1+(100-1)d=-27.5+99(2.5)=220

The answer is 220.

Example Question #21 : Pre Calculus

Find the sum, if possible:

\displaystyle 3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...

Possible Answers:

\displaystyle 3

\displaystyle 1

\displaystyle 9

\displaystyle \frac{3}{2}

\displaystyle \frac{9}{2}

Correct answer:

\displaystyle \frac{9}{2}

Explanation:

The formula for the summation of an infinite geometric series is

\displaystyle S= \frac{a_1}{1-r},

where \displaystyle a_1 is the first term in the series and \displaystyle r is the rate of change between succesive terms.  The key here is finding the rate, or pattern, between the terms.  Because this is a geometric sequence, the rate is the constant by which each new term is multiplied. 

Plugging in our values, we get:

\displaystyle S = \frac{3}{1-\frac{1}{3}}

\displaystyle S=\frac{3}{\frac{2}{3}}

\displaystyle S = \frac{9}{2}

Example Question #1 : Sequences And Series

Find the sum, if possible:

\displaystyle 8-6+\frac{9}{2}-\frac{27}{8}+...

Possible Answers:

\displaystyle \frac{26}{7}

\displaystyle \frac{30}{7}

\displaystyle \frac{34}{7}

\displaystyle \frac{32}{7}

\displaystyle \frac{28}{7}

Correct answer:

\displaystyle \frac{32}{7}

Explanation:

The formula for the summation of an infinite geometric series is

\displaystyle S= \frac{a_1}{1-r},

where \displaystyle a_1 is the first term in the series and \displaystyle r is the rate of change between succesive terms in a series

Because the terms switch sign, we know that the rate must be negative. 

Plugging in our values, we get:

\displaystyle S = \frac{8}{1-(\frac{-3}{4})}

\displaystyle S = \frac{8}{\frac{7}{4}}

\displaystyle S = \frac{32}{7}

Learning Tools by Varsity Tutors