All High School Math Resources
Example Questions
Example Question #1 : How To Find The Length Of The Side Of A Right Triangle
A right triangle with a base of 12 and hypotenuse of 15 is shown below. Find x.
4
5
5.5
4.5
3.5
4
Using the Pythagorean Theorem, the height of the right triangle is found to be = √(〖15〗2 –〖12〗2) = 9, so x=9 – 5=4
Example Question #1 : How To Find The Length Of The Side Of A Right Triangle
A right triangle has sides of 36 and 39(hypotenuse). Find the length of the third side
33
33√2
15
12 √6
42
15
use the pythagorean theorem:
a2 + b2 = c2 ; a and b are sides, c is the hypotenuse
a2 + 1296 = 1521
a2 = 225
a = 15
Example Question #2 : How To Find The Length Of The Side Of A Right Triangle
Bob the Helicopter is at 30,000 ft. above sea level, and as viewed on a map his airport is 40,000 ft. away. If Bob travels in a straight line to his airport at 250 feet per second, how many minutes will it take him to arrive?
2 hours and 30 minutes
1 hour and 45 minutes
3 minutes and 20 seconds
3 minutes and 50 seconds
4 hours and 0 minutes
3 minutes and 20 seconds
Draw a right triangle with a height of 30,000 ft. and a base of 40,000 ft. The hypotenuse, or distance travelled, is then 50,000ft using the Pythagorean Theorem. Then dividing distance by speed will give us time, which is 200 seconds, or 3 minutes and 20 seconds.
Example Question #4 : How To Find The Length Of The Side Of A Right Triangle
A right triangle has two sides, 9 and x, and a hypotenuse of 15. What is x?
14
12
13
10
11
12
We can use the Pythagorean Theorem to solve for x.
92 + x2 = 152
81 + x2 = 225
x2 = 144
x = 12
Example Question #3 : How To Find The Length Of The Side Of A Right Triangle
The area of a right traingle is 42. One of the legs has a length of 12. What is the length of the other leg?
Example Question #11 : How To Find The Length Of The Side Of A Right Triangle
If and , what is the length of ?
AB is the leg adjacent to Angle A and BC is the leg opposite Angle A.
Since we have a triangle, the opposites sides of those angles will be in the ratio .
Here, we know the side opposite the sixty degree angle. Thus, we can set that value equal to .
which also means
Example Question #6 : How To Find The Length Of The Side Of A Right Triangle
Solve for x.
2
6
12
7
6
Use the Pythagorean Theorem. Let a = 8 and c = 10 (because it is the hypotenuse)
Example Question #18 : How To Find The Length Of The Side Of A Right Triangle
Use the Pythagorean Theorem to solve for the missing side of the right triangle.
In this triangle, .
Now we can solve for .
Example Question #14 : How To Find The Length Of The Side Of A Right Triangle
This image depicts a 30-60-90 right triangle. The length of the side opposite the smallest angle is half the length of the hypotenuse.
Example Question #19 : How To Find The Length Of The Side Of A Right Triangle
Given a right triangle, solve for the missing leg if one leg is 12 and the hypotenuse is 13.
Since the traingle is a right traingle, we can use the Pythagorean Theorem to solve for the missing leg:
and the hypotenuse
Certified Tutor