All High School Math Resources
Example Questions
Example Question #5 : Finding Derivatives
What is the derivative of ?
To solve this problem, we can use the power rule. That means we lower the exponent of the variable by one and multiply the variable by that original exponent.
We're going to treat as , as anything to the zero power is one.
Notice that , as anything times zero is zero.
Example Question #6 : General Derivatives And Rules
What is the derivative of ?
To get , we can use the power rule.
Since the exponent of the is , as , we lower the exponent by one and then multiply the coefficient by that original exponent:
Anything to the power is .
Example Question #3 : Concept Of The Derivative
To solve this equation, we can use the power rule. To use the power rule, we lower the exponent on the variable and multiply by that exponent.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Example Question #4 : Finding Derivative Of A Function
What is the derivative of ?
To solve this equation, we can use the power rule. To use the power rule, we lower the exponent on the variable and multiply by that exponent.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
That leaves us with .
Simplify.
As stated earlier, anything to the zero power is one, leaving us with:
Example Question #1 : Derivative Defined As The Limit Of The Difference Quotient
What is the derivative of ?
To solve this equation, we can use the power rule. To use the power rule, we lower the exponent on the variable and multiply by that exponent.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Just like it was mentioned earlier, anything to the zero power is one.
Example Question #31 : Calculus I — Derivatives
What is the derivative of ?
To take the derivative of this equation, we can use the power rule. The power rule says that we lower the exponent of each variable by one and multiply that number by the original exponent.
Simplify.
Remember that anything to the zero power is equal to one.
Example Question #32 : Calculus I — Derivatives
What is the derivative of ?
To take the derivative of this equation, we can use the power rule. The power rule says that we lower the exponent of each variable by one and multiply that number by the original exponent.
We are going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Simplify.
As stated before, anything to the zero power is one.
Example Question #2 : Derivative Defined As The Limit Of The Difference Quotient
What is the derivative of ?
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
Anything to the zero power is one.
Example Question #3 : Derivative Defined As The Limit Of The Difference Quotient
What is the derivative of ?
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
We're going to treat as since anything to the zero power is one.
For this problem that would look like this:
Notice that since anything times zero is zero.
Example Question #21 : Derivatives
What is the derivative of ?
To find the first derivative, we can use the power rule. To do that, we lower the exponent on the variables by one and multiply by the original exponent.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Certified Tutor
Certified Tutor