GRE Subject Test: Math : Systems of Equations

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Solving Systems Of Equations

\displaystyle 2y=6x+4

\displaystyle y=7x-2

Solve the system of equations.

Possible Answers:

\displaystyle x=4, y=8

\displaystyle x=-2, y=-3

\displaystyle x=-8, y=\frac{1}{2}

\displaystyle x=1, y=5

\displaystyle x=-1, y=3

Correct answer:

\displaystyle x=1, y=5

Explanation:

The easiest way to solve this question is to use substitution. Since \displaystyle y=7x-2 you can replace y for 7x-2 in the other equation.

You should have

\displaystyle 2(7x-2)=6x+4.

Distribute the 2 to the parentheses.

\displaystyle 14x-4=6x+4

Add 4 to both sides of the equation.

\displaystyle 14x=6x+8

Subtract 6x from both sides.

\displaystyle 8x=8

Divide by 8 to get x.

\displaystyle x=1

Put 1 back in to either equation for x to solve for y.

\displaystyle y=3(1)+2

\displaystyle y=5

Example Question #2 : Solving Systems Of Equations

\displaystyle -3x+2y=19

\displaystyle -3x-19=2y

Solve the system of equations.

Possible Answers:

\displaystyle x=-6\frac{1}{3}, y=0

\displaystyle x=\frac{1}{4}, y=-2\frac{1}{5}

\displaystyle x=3, y=-4\frac{1}{5}

\displaystyle x=-\frac{1}{5}, y=2\frac{1}{4}

\displaystyle x=-1, y=-4\frac{1}{3}

Correct answer:

\displaystyle x=-6\frac{1}{3}, y=0

Explanation:

First task is to solve at least one of the equations for y.

\displaystyle -3x+2y=19

Move -3x to the other side by adding 3x to both sides.

\displaystyle 2y=3x+19

Divide by 2 to all the terms in the equation.

\displaystyle y=\frac{3}{2}x+\frac{19}{2}

Plug this value for y into the other equation.

\displaystyle -3x-19=2(\frac{3}{2}x+\frac{19}{2})

Distribute the 2.

\displaystyle -3x-19=3x+19

Add 3x to both sides.

\displaystyle -19=6x+19

Subtract 19 from both sides of the equation.

\displaystyle -38=6x

Divide by 6.

\displaystyle x=-6.33 or -6\frac{1}{3}

Plug this back in for x in either equation.

\displaystyle -3(-6.33)+2y=19

\displaystyle 19+2y=19

\displaystyle 2y=0

\displaystyle y=0

 

 

Example Question #1 : Solving Systems Of Equations

Solve each system of equations.

\displaystyle y = 2x-16

\displaystyle y + 3x = 9

Possible Answers:

\displaystyle (5,6)

\displaystyle (-5,6)

\displaystyle (5,-6)

\displaystyle (-5,-6)

Correct answer:

\displaystyle (5,-6)

Explanation:

To solve this system of equations, you are given the value of \displaystyle y.

\displaystyle y = 2x - 16

The second equation is \displaystyle y + 3x = 9

So you put the value of \displaystyle y into the second equation.

\displaystyle 2x-16 + 3x = 9

Combine like terms.

\displaystyle 5x -16 = 9

Add \displaystyle 16 to both sides of the equation.

\displaystyle 5x - 16 + 16 = 9 + 16

\displaystyle 5x = 25

Divide both sides by \displaystyle 5.

\displaystyle \frac{5x}{5} = \frac{25}{5}

\displaystyle x = 5

Substitute the value of x in one of the equations to get the value of y.

\displaystyle y = 2(5) - 16

\displaystyle y = 10-16

\displaystyle y = -6

\displaystyle (5,-6) is the correct answer.

Example Question #1 : Systems Of Equations

Solve the system of equations.

\displaystyle x + y = 5

\displaystyle 2x - 3y =5

Possible Answers:

\displaystyle (-4, -1)

\displaystyle (1,4)

\displaystyle (4, -1)

\displaystyle (4, 1)

Correct answer:

\displaystyle (4, 1)

Explanation:

\displaystyle x + y = 5

\displaystyle 2x-3y = 5

To cancel out the \displaystyle x terms, multiply \displaystyle x + y = 5 by \displaystyle -2

\displaystyle -2x - 2y = -10

Then add:

 

 

 \displaystyle +\displaystyle 2x-3y = 5

______________________

           \displaystyle -5y = -5

\displaystyle y = 1

Plug the value of \displaystyle y, which is \displaystyle 1 into one of the equations to get the value of \displaystyle x.

 

\displaystyle x + 1 = 5

\displaystyle x+1-1 = 5 - 1

\displaystyle x = 4

\displaystyle (4,1) is the correct answer.

Example Question #1 : Systems Of Equations

Solve each system of equations.

\displaystyle y = 6x

\displaystyle y = x-15

Possible Answers:

\displaystyle (-3,-18)

\displaystyle (18,3)

\displaystyle (-18,-3)

\displaystyle (3,18)

Correct answer:

\displaystyle (-3,-18)

Explanation:

Using the substitution method, set the two systems of equations equal to each other.

\displaystyle 6x = x-15

Isolate the variable by subtracting \displaystyle x from both sides of the equation.

\displaystyle 6x-x = x-x-15

\displaystyle 5x = -15

\displaystyle \frac{5x}{5} = \frac{-15}{5}

\displaystyle x = -3

To get the value of \displaystyle y, substitute the value of \displaystyle x in one of the equations.

\displaystyle y = 6(-3)

\displaystyle y = -18

\displaystyle (-3,-18) is the correct answer.

Example Question #4 : Solving Systems Of Equations

Solve each system of equations. 

\displaystyle y = -x + 6

\displaystyle y = 2x-3

Possible Answers:

\displaystyle (-3,-3)

\displaystyle (-3,3)

\displaystyle (3,3)

\displaystyle (3,-3)

Correct answer:

\displaystyle (3,3)

Explanation:

Using the substitution method, set both systems of equations equal to each other.

\displaystyle -x + 6 = 2x - 3

Isolate the variable by adding \displaystyle x to both sides of the equation.

\displaystyle -x + x + 6 = 2x + x -3

\displaystyle 6 = 3x - 3

Add \displaystyle 3 to both sides.

\displaystyle 9 = 3x

Divide both sides by 3.

\displaystyle \frac{9}{3} =\frac{3x}{3}

\displaystyle 3 = x

To get the value of y, substitute the value of x in one of the equations.

\displaystyle 2 (3) - 3 = 6 - 3 = 3

\displaystyle y = 3

\displaystyle (3,3) is the correct answer.

 

Example Question #3 : Solving Systems Of Equations

Solve the systems of equations.

\displaystyle -5x + 10 y = 60

\displaystyle -4x + 16y = 32

Possible Answers:

\displaystyle (-2,-16)

\displaystyle (-16,-2)

\displaystyle (-2,16)

\displaystyle (16,2)

Correct answer:

\displaystyle (-16,-2)

Explanation:

In order to eliminate the \displaystyle x terms, first multiply the first equation by \displaystyle -4.

\displaystyle -4 (-5x+10y) = (-4) 60

\displaystyle 20x - 40y = -240

Then multiply the second equation by \displaystyle 5.

\displaystyle 5 (-4x + 16y) = 5 (32)

\displaystyle -20 x +80y = 160

This will now eliminate the \displaystyle x terms when added together.

       \displaystyle 20x - 40y = -240

\displaystyle -20 x +80y = 160

_________________________

                 \displaystyle 40y = -80

Divide both sides by \displaystyle 40.

\displaystyle y = -2

Now substitute the value of \displaystyle y, which is \displaystyle -2, to get the value of  in one of the the two original equations.

\displaystyle -5x-20 = 60

Add \displaystyle 20 to both sides of the equation.

\displaystyle -5x -20 + 20 = 60 + 20

\displaystyle -5x = 80

Divide both sides by \displaystyle -5.

\displaystyle 80 \div -5 = -16

\displaystyle x = -16

\displaystyle (-16,-2) is the correct answer.

 

Example Question #1 : Systems Of Equations

Solve this system of equations:

\displaystyle y = -5x +2

\displaystyle y = 3x-14

Possible Answers:

\displaystyle (2,-8)

\displaystyle (-8,2)

\displaystyle (2,8)

\displaystyle (8,2)

Correct answer:

\displaystyle (2,-8)

Explanation:

Set both equations equal to each other and solve.

\displaystyle -5x + 2 = 3x - 14

Add \displaystyle 5x to both sides of the equation.

\displaystyle -5x + 5x + 2 = 3x + 5x - 14

\displaystyle 2 = 8x - 14

Add \displaystyle 14 to both sides of the equation.

\displaystyle 2+14 = 8x-14+14

\displaystyle 16 = 8x

Divide both sides by 8.

\displaystyle x = 2

Plug the value of the \displaystyle x variable into one of the equations to get the value of \displaystyle y.

\displaystyle -5(2) + 2 = y

\displaystyle -10 +2 =-8

\displaystyle y = -8

\displaystyle (2,-8) is the correct answer for this system of equations.

Example Question #481 : Gre Subject Test: Math

Solve this system of equations:

\displaystyle 3.5x + 2.5y = 38

\displaystyle 1.5x -7.5y = -18

Possible Answers:

\displaystyle (4,8)

\displaystyle (-4,8)

\displaystyle (-8,4)

\displaystyle (8,4)

Correct answer:

\displaystyle (8,4)

Explanation:

To solve this system of equations, multiply the first equation by \displaystyle 3.

\displaystyle 3 (3.5x + 2.5y) =38 (3)

\displaystyle 10.5x +7.5y = 114

Now add the two equations together to remove the \displaystyle y terms.

   \displaystyle 10.5x +7.5y = 114

+   \displaystyle 1.5x -7.5y = -18

_____________________________

  \displaystyle 12.0x                \displaystyle = 96

Divide both sides by \displaystyle 12.

\displaystyle 96\div12 = 8

\displaystyle x = 8

Plug the value of the \displaystyle x variable, which is \displaystyle 8 into one of the equations.

\displaystyle 3.5(8) + 2.5y = 38

\displaystyle 28 + 2.5y = 38

Subtract \displaystyle 28 from both sides of the equation.

\displaystyle 28-28 + 2.5y = 38-28

\displaystyle 2.5y = 10

Divide both sides by \displaystyle 2.5

\displaystyle y = 4

\displaystyle (8,4) is the correct answer for this system of equations.

 

Example Question #2 : Solving Systems Of Equations

Solve this system of equations:

\displaystyle -\frac{1}{2}x - \frac{1}{4}y =3

\displaystyle -\frac{1}{3}x +\frac{1}{6}y = 2

Possible Answers:

\displaystyle (6,0)

\displaystyle (0,-6)

\displaystyle (0,6)

\displaystyle (-6,0)

Correct answer:

\displaystyle (-6,0)

Explanation:

To solve this system of equations:

\displaystyle -\frac{1}{3}x +\frac{1}{6}y = 2

Multiply the first equation by \displaystyle 4 and the second equation by \displaystyle -6.

\displaystyle 4 (-\frac{1}{2}x -\frac{1}{4}y) = 3(4)

\displaystyle -2x -y =12

 

\displaystyle -6 (-\frac{1}{3}x+\frac{1}{6} y) = (-6) 2

\displaystyle 2x-y = -12

Add these two equations; this will remove the \displaystyle x terms.

\displaystyle -2x -y =12

+\displaystyle 2x-y = -12

___________________

          \displaystyle -2y = 0

                \displaystyle y = 0

To get the value of \displaystyle x, plug the value of \displaystyle y, which is \displaystyle 0 into one of the equations.

\displaystyle 2x -y = -12

\displaystyle 2x - 0 = -12

\displaystyle 2x = -12

Divide both sides by \displaystyle 2

\displaystyle \frac{2x}{2} = \frac{-12}{2}

\displaystyle x = -6

\displaystyle (-6,0) is the correct answer for this system of equations.

 

Learning Tools by Varsity Tutors