GRE Subject Test: Biology : Plant Structures

Study concepts, example questions & explanations for GRE Subject Test: Biology

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Understanding Plant Microstructures

Plant cells differentiate to be able to perform different functions and enable it to grow. One cell type has a critical job in supporting the plant. These cells have secondary walls that are further strengthened by a glue-like substance called lignin, which increases the cell's rigidity. At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing, forming a "skeleton" for the plant.

What type of differentiated plant cell is described?

Possible Answers:

Sclerenchyma cells

Secondary meristems

Collenchyma cells

Parenchyma cells

Correct answer:

Sclerenchyma cells

Explanation:

As described in the background to the question, sclerenchyma cells are specialized to support the plant as it grows. These cells have thick secondary walls that are further strengthened by the hardening agent called lignin.  As a result, these cells are highly rigid and inflexible.  

At maturity, these cells cannot elongate and are found in regions of the plant that have stopped growing. In some parts of the plant, the sclerenchyma cells may even be dead; however, the rigid walls remain and act like a skeleteon that supports the remainder of the plaint over its lifetime.  

Sclerenchyma cells can also further differentiate into two types called sclereids and fibers. Sclerids can provide hardness to nut shells. Fibers, as their name suggests, are usually arranged in long threads and have commercial uses, such as being made into rope.

Example Question #1 : Macrostructures

In plants, leaves contain specialized pores used for gas exchange. Each pore is formed by a pair of cells that control its closing and opening. What are these cells called?

Possible Answers:

Guard cells

Epidermal cells

Stoma cells

Cuticle cells

Correct answer:

Guard cells

Explanation:

For proper functioning, plants must take in carbon dioxide, expel oxygen, and limit the loss of water vapor. This gas exchange takes place via pores called stomata. These pores are formed by a pair of adjacent cells that can open and close in response to a number of factors. These cells are called guard cells.

The cuticle and epidermis are layers of leaf structure, and do not correspond to specific cell types. The stoma is the name of a single pore itself, not its surrounding cells.

Example Question #3 : Understanding Plant Microstructures

What is the main structural component of a plant cell wall?

Possible Answers:

Chitin

Collagen

Peptidoglycan

Cellulose

Actin and myosin

Correct answer:

Cellulose

Explanation:

Cellulose, a polymer of glucose, is the main component of plant cell walls. 

Collagen is found in the connective tissues of animals. Chitin is found in the cell walls of fungi. Actin and myosin are the proteins responsible for contraction in muscle cells; actin is also a microfilament in the cytoskeleton. Peptidoglycan is found in the cell walls of bacteria.

Example Question #1 : Understanding Plant Microstructures

What are the protein channels in plants that allow high rates of water flow through the membrane via passive transport?

Possible Answers:

Plasmodesmata

Xylem 

Carrier proteins

Water does not need a protein channel to pass through the membrane 

Aquaporins

Correct answer:

Aquaporins

Explanation:

The correct answer is aquaporins. While water can move across a membrane via simple diffusion, these transmembrane proteins increase the flow of water. Remember that water is a polar molecule, and is thus relatively impermeable to the plasma membrane despite its small size.

Learning Tools by Varsity Tutors