GRE Math : How to find the area of a right triangle

Study concepts, example questions & explanations for GRE Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1291 : Gre Quantitative Reasoning

Quantitative Comparison

 Gre_quant_171_01

Column A

Area

 

Column B

Perimeter

 
 
Possible Answers:

Column B is greater

Column A is greater

Column A and B are equal

Cannot be determined

Correct answer:

Column A and B are equal

Explanation:

To find the perimeter, add up the sides, here 5 + 12 + 13 = 30. To find the area, multiply the two legs together and divide by 2, here (5 * 12)/2 = 30.

Example Question #1 : How To Find The Area Of A Right Triangle

Gre_quant_179_01

Given triangle ACE where B is the midpoint of AC, what is the area of triangle ABD?

Possible Answers:

96

24

48

72

Correct answer:

24

Explanation:

If B is a midpoint of AC, then we know AB is 12. Moreover, triangles ACE and ABD share angle DAB and have right angles which makes them similar triangles. Thus, their sides will all be proportional, and BD is 4. 1/2bh gives us 1/* 12 * 4, or 24.

Example Question #2 : How To Find The Area Of A Right Triangle

What is the area of a right triangle with hypotenuse of 13 and base of 12?

Possible Answers:

78

30

156

25

60

Correct answer:

30

Explanation:

Area = 1/2(base)(height). You could use Pythagorean theorem to find the height or, if you know the special right triangles, recognize the 5-12-13. The area = 1/2(12)(5) = 30. 

Example Question #1 : Right Triangles

Quantitative Comparison

Quantity A: the area of a right triangle with sides 10, 24, 26

Quantity B: twice the area of a right triangle with sides 5, 12, 13

Possible Answers:

The two quantities are equal.

Quantity B is greater.

Quantity A is greater.

The relationship cannot be determined from the information given.

Correct answer:

Quantity A is greater.

Explanation:

Quantity A: area = base * height / 2 = 10 * 24 / 2 = 120

Quantity B: 2 * area = 2 * base * height / 2 = base * height = 5 * 12 = 60

Therefore Quantity A is greater.

Example Question #2 : How To Find The Area Of A Right Triangle

Quantitative Comparison

Quantity A: The area of a triangle with a height of 6 and a base of 7

Quantity B: Half the area of a trapezoid with a height of 6, a base of 6, and another base of 10

Possible Answers:

Quantity B is greater.

Quantity A is greater.

The relationship cannot be determined from the information given.

The two quantities are equal.

Correct answer:

Quantity B is greater.

Explanation:

Quantity A: Area = 1/2 * b * h = 1/2 * 6 * 7 = 42/2 = 21

Quantity B: Area = 1/2 * (b1 + b2) * h = 1/2 * (6 + 10) * 6 = 48

                Half of the area = 48/2 = 24

Quantity B is greater.

Example Question #2 : How To Find The Area Of A Right Triangle

The radius of the circle is 2. What is the area of the shaded equilateral triangle?

Capture3

Possible Answers:

\dpi{100} \small \pi \sqrt{3}

\dpi{100} \small 3\sqrt{3}

\dpi{100} \small 2\sqrt{2}

\dpi{100} \small \pi \sqrt{2}

\dpi{100} \small 3\pi

Correct answer:

\dpi{100} \small 3\sqrt{3}

Explanation:

This is easier to see when the triangle is divided into six parts (blue). Each one contains an angle which is half of 120 degrees and contains a 90 degree angle. This means each triangle is a 30/60/90 triangle with its long side equal to the radius of the circle. Knowing that means that the height of each triangle is \dpi{100} \small \frac{r\sqrt{3}}{2} and the base is \dpi{100} \small \frac{r}{2}.

Applying \dpi{100} \small \frac{bh}{2} and multiplying by 6 gives \dpi{100} \small 3\sqrt{3}). 

Capture4

Tired of practice problems?

Try live online GRE prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors