All GRE Math Resources
Example Questions
Example Question #1 : Integers
Which of the following pairs of numbers are twin primes?
13, 19
3, 5
1, 3
1, 2
2, 3
3, 5
For starters, 1 is not a prime number, so eliminate the answer choices with 1 in them. Even if you have no idea what twin primes are, at least you've narrowed down the possibilities.
Twin primes are consecutive prime numbers with one even number in between them. 3 and 5 is the only set of twin primes listed. 2 and 3 are not separated by any numbers, and 13 and 19 are not consecutive primes, nor are they separated by one even number only. You should do your best to remember definitions and formulas such as this one, because these questions are considered "free" points on the test. There is no real math involved, just something to remember! Being able to answer a question like this quickly will give you more time for the computationally advanced problems.
Example Question #661 : Gre Quantitative Reasoning
What must be true of all prime numbers?
The sum of two primes is always even.
The distribution of primes is random.
Multiplying two primes will always produce an odd number.
There are only two primes that are consecutive positive integers on the number line.
Every positive prime has a corresponding negative prime.
There are only two primes that are consecutive positive integers on the number line.
Let's go through the five statements.
The sum of two primes is always even: This is only true of the odd primes. 2 is also a prime number, however, and 2 plus an odd number is odd.
Every positive prime has a corresponding negative prime: This is also false. There are no negative primes. A prime number is defined as a number greater than 1 that is divisible by only 1 and itself.
There are only two primes that are consecutive positive integers on the number line: This is true and therefore the correct answer. 2 and 3 are the only primes that are consecutive. Because 2 is the only even prime, all other primes must have at least one number in between them (since every two odd numbers are separated by an even).
Multiplying two primes will always produce an odd number: This is also only true of odd primes. 2 * odd prime = even.
The distribution of primes is random: False. The primes are logarithmically distributed.
Example Question #1 : Prime Numbers
Quantitative Comparison
Quantity A: The smallest prime number multiplied by 3 and divided by the least common multiple of 5 and 10
Quantity B: The smallest odd prime number multiplied by 2 and divided by the 2nd smallest odd prime
Quantity A is greater.
Quantity B is greater.
The relationship cannot be determined from the information given.
The two quantities are equal.
Quantity B is greater.
Quantity A: The smallest prime number is 2. We also need the least common multiple of 5 and 10, which is 10.
So Quantity A = 2 * 3 / 10 = 3/5
Quantity B: The smallest odd prime is 3. The second smallest odd prime is 5.
So Quantity B = 3 * 2 / 5 = 6/5
Quantity B is greater.
Example Question #1 : How To Find Out If A Number Is Prime
Quantitative Comparison
Quantity A: The number of prime numbers between 0 and 100, inclusive.
Quantity B: The number of prime numbers between 101 and 200, inclusive.
Quantity A is greater.
The two quantities are equal.
The relationship cannot be determined from the information given.
Quantity B is greater.
Quantity A is greater.
As we go up on the number line, the number of primes decreases almost exponentially. Therefore there are far more prime numbers between 0 and 100 than there are between 101 and 200. This is a general number theory point that is important to know, but trying to come up with some primes in these two groups will also quickly demonstrate this principle.
Example Question #2 : How To Find Out If A Number Is Prime
Which number is greater than the sum of all the prime factors of 330?
The prime factorization of 330 is .
The sum of the prime factors is .
23 is the only answer choice greater than 21.
Example Question #664 : Gre Quantitative Reasoning
A prime number is divisible by:
Two answers are correct.
Itself
It depends on the prime number.
Two answers are correct.
The definition of a prime number is a number that is divisible by only one and itself. A prime number can't be divided by zero, because numbers divided by zero are undefined. The smallest prime number is 2, which is also the only even prime.
Example Question #665 : Gre Quantitative Reasoning
What is half of the third smallest prime number multiplied by the smallest two digit prime number?
This number does not exist.
The third smallest prime number is 5. (Don't forget that 2 is a prime number, but 1 is not!)
The smallest two digit prime number is 11.
Now we can evaluate the entire expression:
Example Question #668 : Gre Quantitative Reasoning
a, b and c are integers, and a and b are not equivalent.
If ax + bx = c, where c is a prime integer, and a and b are positive integers which of the following is a possible value of x?
3
None of the other answers
1
4
2
1
This question tests basic number properties. Prime numbers are numbers which are divisible only by one and themselves. Answer options '2' and '4' are automatically out, because they will always produce even products with a and b, and the sum of two even products is always even. Since no even number greater than 2 is prime, 2 and 4 cannot be answer options. 3 is tempting, until you remember that the sum of any two multiples of 3 is itself divisible by 3, thereby negating any possible answer for c except 3, which is impossible. There are, however, several possible combinations that work with x = 1. For instance, a = 8 and b = 9 means that 8(1) + 9(1) = 17, which is prime. You only need to find one example to demonstrate that an option works. This eliminates the "None of the other answers" option as well.
Example Question #666 : Gre Quantitative Reasoning
Which statement is false about prime numbers?
Every integer greater than 1 has a unique prime factorization.
Every positive integer except for 1 is a prime or a product of primes.
None are false.
All are false.
There are no negative primes.
None are false.
All of these statements are true. Let's go through them.
1. There are no negative prime numbers. This appears as if it might be false, but in fact, the prime numbers are defined as whole numbers greater than one that are divisible by only one and itself.
2. Every number except 0 and 1 is a prime number or product of primes. This is also true. Let's look at the factorization of a number that isn't prime. For example, 6 = 2 * 3, which is a product of primes. 12 = 2 * 2 * 3, which is also a product of primes.
3. Every number has a unique prime factorization. We just saw that every number is either prime, or a product of primes. Therefore each number must have a unique prime factorization. Just as above, 6 is the product of two primes, 2 and 3. No other number can be made by mulitplying 2 * 3. The same is true for 12. When we multiply 2 * 2 * 3, the only number we will ever get is 12.
Example Question #667 : Gre Quantitative Reasoning
Column A
5!/3!
Column B
6!/4!
The relationship cannot be determined from the information given.
The quantity in Column A is greater.
The quantity in Column B is greater.
The two quantities are equal.
The quantity in Column B is greater.
This is a basic factorial question. A factorial is equal to the number times every positive whole number smaller than itself. In Column A, the numerator is 5 * 4 * 3 * 2 * 1 while the denominator is 3 * 2 * 1.
As you can see, the 3 * 2 * 1 can be cancelled out from both the numerator and denominator, leaving only 5 * 4.
The value for Column A is 5 * 4 = 20.
In Column B, the numerator is 6 * 5 * 4 * 3 * 2 * 1 while the denominator is 4 * 3 * 2 * 1. After simplifying, Column B gives a value of 6 * 5, or 30.
Thus, Column B is greater than Column A.