All GRE Math Resources
Example Questions
Example Question #31 : Algebraic Functions
, solve for .
The first step is to multiple each side by and that leaves you with
.
The next step will be to add to both sides resulting in
.
Finally divide both sides by giving answer of .
Example Question #32 : Algebraic Functions
For which value of are the following two functions equal?
6
5
4
2
3
4
It is important to follow the order of operations for this equation and find a solution that satisfies both F(x) and G(x).
Recall the order of operations is PEMDAS: Parentheses, Exponents, Multiplication/Division, Addition/Subtraction.
The correct answer is 4 because
F(x) = 2x + 3x + (9x/3) = 2(4) + 34 + ((9 * 4)/3) = 101, and
G(x) = (((24 + 44)/2) - 4 * 4) – 5(4) + 1 = 101.
Example Question #33 : Algebraic Functions
The function is defined as . What is ?
24
56
18
36
-36
24
Substitute -1 for in the given function.
If you didn’t remember the negative sign, you will have calculated 36. If you remembered the negative sign at the very last step, you will have calculated -36; however, if you did not remember that is 1, then you will have calculated 18.
Example Question #34 : Algebraic Functions
If the function is created by shifting up four units and then reflecting it across the x-axis, which of the following represents in terms of ?
We can take each of the listed transformations of one at a time. If is to be shifted up by four units, increase every value of by 4.
Next, take this equation and reflect it across the x-axis. If we reflect a function across the x-axis, then all of its values will be multiplied by negative one. So, can be written in the following way:
Lastly, distribute the negative sign to arrive at the final answer.