GMAT Math : Understanding functions

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Understanding Functions

Define the operation \(\displaystyle \Theta\) as follows:

\(\displaystyle a \; \Theta \; b = ab + 100\)

Solve for \(\displaystyle x\) : \(\displaystyle 4\; \Theta \; x = 72\)

Possible Answers:

\(\displaystyle x = 18\)

\(\displaystyle x = -7\)

\(\displaystyle x = -9\)

\(\displaystyle x = -18\)

\(\displaystyle x = 9\)

Correct answer:

\(\displaystyle x = -7\)

Explanation:

\(\displaystyle 4\; \Theta \; x = 72\)

\(\displaystyle 4x + 100 = 72\)

\(\displaystyle 4x + 100 -100 = 72-100\)

\(\displaystyle 4x = -28\)

\(\displaystyle 4x \div 4 = -28 \div 4\)

\(\displaystyle x = -7\)

Example Question #12 : Understanding Functions

Define \(\displaystyle f(x) = A (x-B)^{3}\), where \(\displaystyle A \neq 0, B \neq 0\).

Evaluate \(\displaystyle f^{-1} (1)\) in terms of \(\displaystyle A\) and \(\displaystyle B\).

Possible Answers:

\(\displaystyle f^{-1} (1)= -B + \frac{1}{\sqrt[3]{A}}\)

\(\displaystyle f^{-1} (1)= B + \frac{1}{\sqrt[3]{A}}\)

\(\displaystyle f^{-1} (1)= B - \frac{1}{\sqrt[3]{A}}\)

\(\displaystyle f^{-1} (1)= B + \sqrt[3]{A}\)

\(\displaystyle f^{-1} (1)= B - \sqrt[3]{A}\)

Correct answer:

\(\displaystyle f^{-1} (1)= B + \frac{1}{\sqrt[3]{A}}\)

Explanation:

This is equivalent to asking for the value of \(\displaystyle x\) for which \(\displaystyle f(x) = 1\), so we solve for \(\displaystyle x\) in the following equation:

\(\displaystyle f(x) = 1\)

\(\displaystyle A (x-B)^{3} =1\)

\(\displaystyle \frac{A (x-B)^{3}}{A} =\frac{1}{A}\)

\(\displaystyle (x-B)^{3} =\frac{1}{A}\)

\(\displaystyle \sqrt[3]{(x-B)^{3} }=\sqrt[3]{\frac{1}{A}}\)

\(\displaystyle x-B =\sqrt[3]{\frac{1}{A}}\)

\(\displaystyle x-B = \frac{1}{\sqrt[3]{A}}\)

\(\displaystyle x-B + B = B + \frac{1}{\sqrt[3]{A}}\)

\(\displaystyle x = B + \frac{1}{\sqrt[3]{A}}\)

Therefore, \(\displaystyle f^{-1} (1)= B + \frac{1}{\sqrt[3]{A}}\).

Example Question #13 : Understanding Functions

Define an operation \(\displaystyle \odot\) as follows:

For any real numbers \(\displaystyle a,b\) , 

\(\displaystyle a \odot b = (a-1) (b-1)\)

Evaluate \(\displaystyle \left (5 \odot 5 \right )\odot 5\).

Possible Answers:

\(\displaystyle 64\)

\(\displaystyle 60\)

\(\displaystyle 75\)

\(\displaystyle 96\)

\(\displaystyle 100\)

Correct answer:

\(\displaystyle 60\)

Explanation:

\(\displaystyle \left (5 \odot 5 \right )\odot 5\) 

\(\displaystyle = \left [(5 -1) (5 -1) \right ] \odot 5\)

\(\displaystyle = (4 \cdot 4 ) \odot 5\)

\(\displaystyle = 16 \odot 5\)

\(\displaystyle = \left (16-1 \right ) \left (5-1 \right )\)

\(\displaystyle = 15 \cdot4 = 60\)

Example Question #14 : Understanding Functions

An infinite sequence begins as follows:

\(\displaystyle 1, 2, -3, 4, 5, -6, 7,8,-9 ...\)

Assuming this pattern continues infinitely, what is the sum of the 1000th, 1001st and 1002nd terms?

Possible Answers:

\(\displaystyle 999\)

\(\displaystyle 1,001\)

\(\displaystyle 1,000\)

\(\displaystyle 3\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 999\)

Explanation:

This can be seen as a sequence in which the \(\displaystyle Nth\) term is equal to \(\displaystyle N\) if \(\displaystyle N\) is not divisible by 3, and \(\displaystyle -N\) otherwise. Since 1,000 and 1,001 are not multiples of 3, but 1,002 is, the 1000th, 1001st, and 1002nd terms are, respectively,

\(\displaystyle 1000,1001,-1002\)

and their sum is 

\(\displaystyle 1000+ 1001+ \left (-1002 \right ) = 999\)

Example Question #15 : Understanding Functions

Define \(\displaystyle f(x) = \sqrt{x}\) . What is \(\displaystyle \left (f \circ f \right )(x)\) ?

Possible Answers:

\(\displaystyle \left (f \circ f \right )(x) = x\)

\(\displaystyle \left (f \circ f \right )(x) = 2\sqrt{x}\)

\(\displaystyle \left (f \circ f \right )(x) = \sqrt[3]{x}\)

\(\displaystyle \left (f \circ f \right )(x) = \sqrt[4]{x}\)

\(\displaystyle \left (f \circ f \right )(x) = x^{2}\)

Correct answer:

\(\displaystyle \left (f \circ f \right )(x) = \sqrt[4]{x}\)

Explanation:

This can best be solved by rewriting \(\displaystyle \sqrt{ x}\) as \(\displaystyle x^{\frac{1}{2}}\) and using the power of a power property.

\(\displaystyle \left (f \circ f \right )(x) = f (f(x)) = \left [f(x) \right]^{\frac{1}{2}} =\left ( x^{\frac{1}{2}} \right )^{\frac{1}{2}}=x^{\frac{1}{2}\cdot \frac{1}{2} } =x^{\frac{1}{4} } =\sqrt[4]{x}\)

Example Question #11 : Understanding Functions

\(\displaystyle \left \lceil x \right \rceil\) is defined as the least integer greater than or equal to \(\displaystyle x\).

\(\displaystyle \left \lfloor x \right \rfloor\) is defined as the greatest integer less than or equal to \(\displaystyle x\).

 

Define \(\displaystyle g (x) = \left \lfloor x+ 0.5 \right \rfloor - \left \lceil x - 0.5 \right \rceil\).

Evaluate \(\displaystyle g (3.9 )\).

Possible Answers:

\(\displaystyle g (3.9) = 1\)

\(\displaystyle g (3.9) = 0\)

\(\displaystyle g (3.9) = -1\)

\(\displaystyle g (3.9) = 2\)

\(\displaystyle g (3.9) = -2\)

Correct answer:

\(\displaystyle g (3.9) = 0\)

Explanation:

\(\displaystyle g (x) = \left \lfloor x+ 0.5 \right \rfloor - \left \lceil x - 0.5 \right \rceil\)

\(\displaystyle g (3.9) = \left \lfloor 3.9+ 0.5 \right \rfloor - \left \lceil 3.9 - 0.5 \right \rceil\)

\(\displaystyle g (3.9) = \left \lfloor 4.4 \right \rfloor - \left \lceil 3.4 \right \rceil\)

\(\displaystyle g (3.9) = 4 - 4 = 0\)

Example Question #17 : Understanding Functions

Define an operation \(\displaystyle \diamond\) as follows:

For any real numbers \(\displaystyle A,B\),

\(\displaystyle A \diamond B = A^{2}+B^{2}\).

Evaluate \(\displaystyle \left (5 \diamond 0 \right ) + \left (-5 \diamond 0 \right )\).

Possible Answers:

\(\displaystyle -25\)

\(\displaystyle -50\)

\(\displaystyle 25\)

\(\displaystyle 50\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 50\)

Explanation:

\(\displaystyle 5 \diamond 0 = 5^{2} - 0 = 25\)

\(\displaystyle -5 \diamond 0 = \left (-5 \right )^{2} - 0 = 25\)

\(\displaystyle \left (5 \diamond 0 \right ) + \left (-5 \diamond 0 \right ) = 25 + 25 = 50\)

Example Question #18 : Understanding Functions

\(\displaystyle \left \lceil x \right \rceil\) is defined as the least integer greater than or equal to \(\displaystyle x\).

Define \(\displaystyle f(x) = \left \lceil x ^{2}\right \rceil\).

Define \(\displaystyle g(x) = \left \lceil x + 0.5\right \rceil - 0.5\).

Evaluate \(\displaystyle \left ( f \circ g \right )(4)\).

Possible Answers:

\(\displaystyle 17\)

\(\displaystyle 25\)

\(\displaystyle 21\)

\(\displaystyle 20\)

\(\displaystyle 16\)

Correct answer:

\(\displaystyle 21\)

Explanation:

\(\displaystyle \left ( f \circ g \right )(4) = f(g(4))\)

First, evaluate \(\displaystyle g(4)\):

\(\displaystyle g(x) = \left \lceil x + 0.5\right \rceil - 0.5\)

\(\displaystyle g(4) = \left \lceil 4 + 0.5 \right \rceil - 0.5\)

\(\displaystyle g(4) = \left \lceil 4.5 \right \rceil - 0.5\)

\(\displaystyle g(4) =5- 0.5 = 4.5\)

Now, evaluate \(\displaystyle f (4.5)\):

\(\displaystyle f(x) = \left \lceil x ^{2}\right \rceil\)

\(\displaystyle f(4.5) = \left \lceil 4.5 ^{2}\right \rceil\)

\(\displaystyle f(4.5) = \left \lceil 20.25 \right \rceil = 21\)

Example Question #19 : Understanding Functions

\(\displaystyle \left \lfloor x \right \rfloor\) is defined as the greatest integer less than or equal to \(\displaystyle x\).

Solve for \(\displaystyle y\)\(\displaystyle \left \lfloor 3y - 1 \right \rfloor = 7\)

Possible Answers:

\(\displaystyle \left (\frac{8}{3}, 3 \right ]\)

\(\displaystyle \left ( \frac{8}{3}, 3 \right )\)

\(\displaystyle \left [ \frac{7}{3}, \frac{8}{3} \right )\)

\(\displaystyle \left (\frac{7}{3}, \frac{8}{3} \right ]\)

\(\displaystyle \left [ \frac{8}{3}, 3 \right )\)

Correct answer:

\(\displaystyle \left [ \frac{8}{3}, 3 \right )\)

Explanation:

\(\displaystyle \left \lfloor 3y - 1 \right \rfloor = 7\) 

means that the greatest integer less than or equal to \(\displaystyle 3y - 1\) is 7. The equivalent statement is

\(\displaystyle 7 \leq 3y - 1 < 8\).

Solve for \(\displaystyle y\) as follows:

\(\displaystyle 7 + 1 \leq 3y - 1 + 1 < 8 + 1\)

\(\displaystyle 8 \leq 3y < 9\)

\(\displaystyle 8 \div 3 \leq 3y \div 3 < 9 \div 3\)

\(\displaystyle \frac{8}{3} \leq y< 3\)

or, in interval form, \(\displaystyle \left [ \frac{8}{3}, 3 \right )\)

Example Question #20 : Understanding Functions

Which of the following pairs of statements is sufficient to prove that \(\displaystyle f(x)\) does not have an inverse?

Possible Answers:

\(\displaystyle f(5) = 7,f(-5) = \frac{1}{7}\)

\(\displaystyle f(1) = 10, f (-1) = -10\)

\(\displaystyle f (x)\) is not defined for \(\displaystyle x = 2\), \(\displaystyle f (x)\) is not defined for \(\displaystyle x = -2\),

None of these pairs of statements would be sufficient to prove that \(\displaystyle f\) does not have an inverse.

\(\displaystyle f(4) = 3,f(-4) = 3\)

Correct answer:

\(\displaystyle f(4) = 3,f(-4) = 3\)

Explanation:

For a function \(\displaystyle f\) to have an inverse, no \(\displaystyle x\)-coordinate can be paired with more than one \(\displaystyle y\)-coordinate. Of our choices, only

 \(\displaystyle f(4) = 3,f(-4) = 3\) 

 causes this to happen.

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors