GMAT Math : Understanding exponents

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Understanding Exponents

Divide:

\(\displaystyle \left (56x^{3} +21x ^{2} -63x + 77 \right )\div 7 x ^{2}\)

Possible Answers:

\(\displaystyle 8 x^{2} +3x + \frac{ 11 }{x }-\frac{9}{ x ^{2} }\)

\(\displaystyle 8 x +3 + \frac{ 11 }{x }-\frac{9}{ x ^{2} }\)

\(\displaystyle 8 x +3 -\frac{9}{ x }+ \frac{ 11 }{x ^{2}}\)

\(\displaystyle 8 x^{2} +3 -\frac{9}{ x ^{2}}+ \frac{ 11 }{x ^{3}}\)

\(\displaystyle 8 x^{2} +3x -\frac{9}{ x }+ \frac{ 11 }{x ^{2}}\)

Correct answer:

\(\displaystyle 8 x +3 -\frac{9}{ x }+ \frac{ 11 }{x ^{2}}\)

Explanation:

\(\displaystyle \left (56x^{3} +21x ^{2} -63x + 77 \right )\div 7 x ^{2}\)

\(\displaystyle = \frac{ 56x^{3} }{7 x ^{2}} + \frac{ 21x ^{2} }{7 x ^{2}}- \frac{ 63x }{7 x ^{2}}+ \frac{ 77 }{7 x ^{2}}\)

\(\displaystyle = \frac{ 56 }{7 } x^{3-2} + \frac{ 21 }{7 }- \frac{ 63 }{7}\cdot \frac{1}{ x ^{2-1}}+ \frac{ 77 }{7} \cdot \frac{1}{ x ^{2}}\)

\(\displaystyle = 8 x +3 -\frac{9}{ x }+ \frac{ 11 }{x ^{2}}\)

Example Question #12 : Understanding Exponents

Solve for \(\displaystyle N\):

\(\displaystyle \left (\frac{1}{25} \right )^{N} \cdot 5^{6} = 125\)

Possible Answers:

The equation has no solution.

\(\displaystyle N = -2\)

\(\displaystyle N =- \frac{1}{4}\)

\(\displaystyle N = \frac{3}{2}\)

\(\displaystyle N =- \frac{1}{2}\)

Correct answer:

\(\displaystyle N = \frac{3}{2}\)

Explanation:

\(\displaystyle \left (\frac{1}{25} \right )^{N} \cdot 5^{6} = 125\)

\(\displaystyle \left ( 5 ^{-2} \right )^{N} \cdot 5^{6} = 5^{3}\)

\(\displaystyle 5 ^{-2 \cdot N } \cdot 5^{6} = 5^{3}\)

\(\displaystyle 5 ^{-2 N +6 } = 5^{3}\)

\(\displaystyle -2N + 6 = 3\)

\(\displaystyle -2N + 6-6 = 3 -6\)

\(\displaystyle -2N = -3\)

\(\displaystyle -2N \div (-2 ) = -3 \div (-2 )\)

\(\displaystyle N = \frac{3}{2}\)

Example Question #1111 : Gmat Quantitative Reasoning

Which of the following is equal to \(\displaystyle \log 8 + \log 5 - \log 4\) ?

Possible Answers:

\(\displaystyle \log 9\)

\(\displaystyle 2\)

\(\displaystyle 2 \log 5\)

\(\displaystyle 1\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 1\)

Explanation:

\(\displaystyle \log 8 + \log 5 - \log 4\)

\(\displaystyle = \log \left ( 8 \cdot 5 \right ) - \log 4\)

\(\displaystyle = \log 40 - \log 4\)

\(\displaystyle = \log \left ( 40 \div 4 \right )\)

\(\displaystyle = \log 10 = 1\)

Example Question #1112 : Gmat Quantitative Reasoning

Which of the following is equal to \(\displaystyle 4 \log 3 - 2 \log 6\) ?

Possible Answers:

\(\displaystyle \log 4 - \log 9\)

\(\displaystyle \log 2 - \log 3\)

\(\displaystyle 0\)

\(\displaystyle \log 3 - \log 2\)

\(\displaystyle \log 9 - \log 4\)

Correct answer:

\(\displaystyle \log 9 - \log 4\)

Explanation:

\(\displaystyle 4 \log 3 - 2 \log 6\)

\(\displaystyle = \log\left ( 3^{4} \right ) - \log \left ( 6^{2} \right )\)

\(\displaystyle = \log 81 - \log 36\)

\(\displaystyle = \log\frac{ 81}{36}\)

\(\displaystyle = \log\frac{ 9}{4}\)

\(\displaystyle = \log 9 - \log 4\)

Example Question #1121 : Gmat Quantitative Reasoning

Which of the following is true about  \(\displaystyle \log_{5} 1,000\) ?

Possible Answers:

\(\displaystyle \log_{5} 1,000 = 6\)

\(\displaystyle \log_{5} 1,000 = 5\)

\(\displaystyle 5 < \log_{5} 1,000 < 6\)

\(\displaystyle \log_{5} 1,000 = 4\)

\(\displaystyle 4 < \log_{5} 1,000 < 5\)

Correct answer:

\(\displaystyle 4 < \log_{5} 1,000 < 5\)

Explanation:

\(\displaystyle 5 ^{4} = 625; 5 ^{5} = 3,125\)

Therefore, 

\(\displaystyle \log_{5} 625 = 4; \log_{5} 3,125 = 5\)

\(\displaystyle \log_{5} 625 < \log_{5} 1,000 < \log_{5} 3,125\)

\(\displaystyle 4 < \log_{5} 1,000 < 5\)

Example Question #11 : Exponents

Which of the following is equal to \(\displaystyle 2 + \log 6\) ? 

Possible Answers:

\(\displaystyle \log 600\)

\(\displaystyle \log 36\)

\(\displaystyle \log 12\)

\(\displaystyle \log 8\)

\(\displaystyle \log 64\)

Correct answer:

\(\displaystyle \log 600\)

Explanation:

\(\displaystyle 2 + \log 6 = \log \left ( 10^{2} \right ) + \log 6 = \log 100 + \log 6 = \log\left ( 100 \cdot 6 \right ) = \log 600\)

Example Question #1122 : Gmat Quantitative Reasoning

Express the result in scientific notation:

\(\displaystyle \left ( 5\times 10^{6}\right )^{3}\)

Possible Answers:

\(\displaystyle 1.25 \times 10^ {11}\)

\(\displaystyle 1.25 \times 10^ {20}\)

\(\displaystyle 125 \times 10^{9 }\)

\(\displaystyle 1.25 \times 10^ {10}\)

\(\displaystyle 125 \times 10^{18 }\)

Correct answer:

\(\displaystyle 1.25 \times 10^ {20}\)

Explanation:

\(\displaystyle \left ( 5\times 10^{6}\right )^{3}\)

\(\displaystyle = 5^{3} \times \left ( 10^{6}\right )^{3}\)

\(\displaystyle = 125 \times 10^{6\cdot 3 }\)

\(\displaystyle = 125 \times 10^{18 }\)

Since 125 is not in the range \(\displaystyle \left [1,10 \right )\), we adjust the answer as follows:

\(\displaystyle 125 \times 10^{18 }\)

\(\displaystyle = 1.25 \times 10^ {2}\times 10^{18 }\)

\(\displaystyle = 1.25 \times 10^ {2+18}\)

\(\displaystyle = 1.25 \times 10^ {20}\)

Example Question #13 : Understanding Exponents

Express the quotient in scientific notation:

\(\displaystyle \left ( 2.4 \times 10 ^{12}\right ) \div \left (6.4 \times 10^{4} \right )\)

Possible Answers:

\(\displaystyle \frac{15}{4}\times 10 ^ {7 }\)

\(\displaystyle 3.75\times 10 ^ {7 }\)

\(\displaystyle 0.375 \times 10 ^{8}\)

\(\displaystyle \frac{3}{8} \times 10 ^{8}\)

\(\displaystyle 3.75\times 10 ^ {9 }\)

Correct answer:

\(\displaystyle 3.75\times 10 ^ {7 }\)

Explanation:

\(\displaystyle \left ( 2.4 \times 10 ^{12}\right ) \div \left (6.4 \times 10^{4} \right )\) 

\(\displaystyle = \frac{ 2.4 \times 10 ^{12} }{6.4 \times 10^{4}}\)

\(\displaystyle = \frac{ 2.4 }{6.4 } \times \frac{ 10 ^{12} }{ 10^{4}}\)

\(\displaystyle =0.375 \times 10 ^{12-4}\)

\(\displaystyle =0.375 \times 10 ^{8}\)

Since 0.375 is not in the range \(\displaystyle \left [1,10 \right )\), we adjust the answer as follows:

\(\displaystyle 0.375 \times 10 ^{8}\)

\(\displaystyle = 3.75\times 10 ^ {-1} \times 10 ^{8}\)

\(\displaystyle = 3.75\times 10 ^ {-1+8 }\)

\(\displaystyle = 3.75\times 10 ^ {7 }\)

Example Question #1123 : Gmat Quantitative Reasoning

Give the result in scientific notation:

\(\displaystyle \left ( 4 \times 10 ^{-7}\right ) ^{3}\)

Possible Answers:

\(\displaystyle 6.4 \times 10 ^{-10}\)

\(\displaystyle 64 \times 10 ^{-4}\)

\(\displaystyle 6.4 \times 10 ^{-22}\)

\(\displaystyle 64 \times 10 ^{-21}\)

\(\displaystyle 6.4 \times 10 ^{-20 }\)

Correct answer:

\(\displaystyle 6.4 \times 10 ^{-20 }\)

Explanation:

\(\displaystyle \left ( 4 \times 10 ^{-7}\right ) ^{3}\)

\(\displaystyle = 4^{3} \times \left ( 10 ^{-7}\right ) ^{3}\)

\(\displaystyle = 64 \times 10 ^{-7\cdot 3}\)

\(\displaystyle = 64 \times 10 ^{-21}\)

Since 64 does not fall in the range \(\displaystyle [1, 10)\), we adjust as follows:

\(\displaystyle 64 \times 10 ^{-21}\)

\(\displaystyle = 6.4\times 10 ^{1} \times 10 ^{-21}\)

\(\displaystyle = 6.4 \times 10 ^{1+ \left (-21 \right )}\)

\(\displaystyle = 6.4 \times 10 ^{-20 }\)

Example Question #13 : Exponents

Give the sum in scientific notation:

\(\displaystyle (8.4 \times 10^{8} ) + (5.7 \times 10 ^{7})\)

Possible Answers:

\(\displaystyle 1.41 \times 10^{16}\)

\(\displaystyle 14.1 \times 10^{15}\)

\(\displaystyle 8.97 \times 10^{8}\)

\(\displaystyle 89.7 \times 10 ^{7}\)

\(\displaystyle 8.97 \times 10^{16}\)

Correct answer:

\(\displaystyle 8.97 \times 10^{8}\)

Explanation:

Rewrite the second addend as follows:

\(\displaystyle (8.4 \times 10^{8} ) + (5.7 \times 10 ^{7})\)

\(\displaystyle =(8.4 \times 10^{8} ) + (0.57 \times 10 ^{1} \times 10 ^{7})\)

\(\displaystyle = (8.4 \times 10^{8} ) + (0.57 \times 10 ^{1+7} )\)

\(\displaystyle = (8.4 \times 10^{8} ) + (0.57 \times 10 ^{8} )\)

\(\displaystyle = (8.4 + 0.57 ) \times 10 ^{8}\)

\(\displaystyle = 8.97 \times 10 ^{8}\)

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors