GMAT Math : Arithmetic

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #32 : Understanding Real Numbers

Define an operation  on the real numbers as follows:

If , then .

If , then 

If , then .

Multiply  by . What is the result?

Possible Answers:

Correct answer:

Explanation:

First, evaluate . Since , use the defintion of  for the case :

.

Now, evaluate . Since , use the defintion of  for the case :

The product of  and  is .

Example Question #38 : Real Numbers

Define an operation  on the real numbers as follows:

If , then 

If , then 

If , then 

Divide  by . What is the quotient?

Possible Answers:

Undefined

Correct answer:

Explanation:

 and  are both calculated by using the defintion of  for the case :

Their quotient is .

Example Question #1992 : Problem Solving Questions

Each of  stands for a real number; if one appears more than once in a choice, it stands for the same number each time.

Which of the following diagrams demonstrates a commutative property?

Possible Answers:

If  and , then 

If  then 

Correct answer:

Explanation:

Addition and multiplication are both commutative, which means that a sum or product has the same value regardless of the order in which the addends or factors are written. The diagram

is the one that demonstrates this for addition.

Example Question #33 : Understanding Real Numbers

Define an operation  on the real numbers as follows:

If  and  are both negative, then .

If  and  are not both negative, then .

Divide  by . What is the quotient?

Possible Answers:

Undefined

Correct answer:

Undefined

Explanation:

 can be evaluated using the definition of  for the case of both  and  being negative:

 can be evaluated using the definition of  for the case of  and  not both being negative:

The quotient: , which is undefined, as zero cannot be taken as a divisor.

Example Question #441 : Arithmetic

Define an operation  on the real numbers as follows:

If both  and  are integers, then .

If neither  nor  is an integer, then .

If exactly one of   and  is an integer, then .

Which of the following is equal to 

 ?

Possible Answers:

Correct answer:

Explanation:

First, evaluate  using the definition of  for neither  nor  an integer:

Therefore,  , which is evaluated using the definition of  for exactly one of  and  an integer:

,

the correct response.

Example Question #41 : Real Numbers

Define an operation  on the real numbers as follows:

If both  and  are positive, then .

If neither  nor  is positive, then .

If exactly one of   and  is positive, then .

Evaluate .

Possible Answers:

Correct answer:

Explanation:

First, evaluate  using the definition of  for neither  nor  positive:

Therefore, 

, which is evaluated using the definition of  for neither  nor  positive:

, the correct response.

Example Question #43 : Understanding Real Numbers

Each of  stands for a real number; if one appears more than once in a choice, it stands for the same number each time.

Which of the following diagrams demonstrates the reflexive property?

Possible Answers:

If  then 

If  and , then 

Correct answer:

Explanation:

According to the reflexive property of equality, any number is equal to itself. This is demonstrated by the diagram

.

Example Question #44 : Understanding Real Numbers

Define an operation  on the real numbers as follows:

If both  and  are integers, then .

If neither  nor  is an integer, then .

If exactly one of  and  is an integer, then .

Which of the following is equal to 

?

Possible Answers:

Correct answer:

Explanation:

  can be evaluated using the defintion of  for exactly one of  and  an integer:

 

 can be evaluated using the defintion of  for  and  both integers:

 

, which can be evaluated using the defintion of  for  and  both integers:

, the correct response.

Example Question #442 : Arithmetic

Define an operation  on the integers as follows:

If both  and  are odd, then .

If both  and  are even, then .

If  is odd and  is even, or vice versa, then .

Add  to . What is the sum?

Possible Answers:

Correct answer:

Explanation:

Both  and  can be calculated using the definition of  for the case of exactly one of  and  being odd and one being even:

.

Add: 

Example Question #46 : Understanding Real Numbers

Define an operation  on the integers as follows:

If both  and  are prime, then .

If neither  nor  is prime, then .

If exactly one of   and  is prime, then .

Multiply  by . What is the product?

Possible Answers:

Correct answer:

Explanation:

A prime number has exactly two factors, 1 and the number itself.

Neither 6 nor 1 is a prime number; 1 has only one factor and is not considered to be prime, and 6 has more than two factors - 1, 2, 3, and 6. Therefore,  can be evaluated using the defintion of  for two numbers whose absolute values are not prime:

2 and 3 are prime numbers, since each has exactly two factors, 1 and the number itself. Therefore,  can be evaluated using the defintion of  for two numbers whose absolute values are prime:

The product is 

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors