GMAT Math : Algebra

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1441 : Problem Solving Questions

Solve for \displaystyle x\displaystyle \frac{1}{3}x+\frac{2}{3}y=\frac{7}{9}

Possible Answers:

\displaystyle y=\frac{7}{3}-2x

\displaystyle x=\frac{3}{7}-2y

\displaystyle x=\frac{7}{3}-2y

Not enough information provided

\displaystyle x=\frac{2}{3}-7y

Correct answer:

\displaystyle x=\frac{7}{3}-2y

Explanation:

In order to solve the equation for \displaystyle x, we need to isolate \displaystyle x on one side of the equation:

\displaystyle \frac{1}{3}x+\frac{2}{3}y=\frac{7}{9}

\displaystyle \frac{1}{3}x=\frac{7}{9}-\frac{2}{3}y

\displaystyle x=\frac{21}{9}-2y

Reducing the fraction,

\displaystyle x=\frac{7}{3}-2y

Example Question #41 : Solving Equations

Solve for \displaystyle d in the equation 

\displaystyle 3d + ad + y = 10

Possible Answers:

\displaystyle d= \frac{10 + y }{3+a}

\displaystyle d= \frac{10 - y+a }{3 }

\displaystyle d= \frac{10 - y }{3+a}

\displaystyle d= \frac{10 - y-a }{3 }

Correct answer:

\displaystyle d= \frac{10 - y }{3+a}

Explanation:

\displaystyle 3d + ad + y = 10

\displaystyle 3d + ad + y - y= 10 - y

\displaystyle 3d + ad = 10 - y

\displaystyle \left (3 + a \right )d = 10 - y

\displaystyle \frac{\left (3 + a \right )d }{3+a}= \frac{10 - y }{3+a}

\displaystyle d= \frac{10 - y }{3+a}

Example Question #363 : Algebra

Solve for \displaystyle w in the equation:

\displaystyle v = 1+ \sqrt[3]{w-7}

Possible Answers:

\displaystyle w = v^{3} -3v^{2}+3v+6

\displaystyle w = v^{3} +6

\displaystyle w = v^{3} +3v^{2}+3v-6

\displaystyle w = v^{3} +3v^{2}+3v+8

\displaystyle w = v^{3} -3v^{2}+3v-8

Correct answer:

\displaystyle w = v^{3} -3v^{2}+3v+6

Explanation:

\displaystyle v = 1+ \sqrt[3]{w-7}

\displaystyle v- 1 = 1+ \sqrt[3]{w-7} - 1

\displaystyle \sqrt[3]{w-7} = v- 1

\displaystyle \left (\sqrt[3]{w-7}\right )^{3} = \left (v- 1 \right )^{3}

\displaystyle w-7= v^{3} -3v^{2}+3v-1

\displaystyle w-7+ 7= v^{3} -3v^{2}+3v-1 + 7

\displaystyle w = v^{3} -3v^{2}+3v+6

Example Question #361 : Algebra

Solve for \displaystyle a in the equation 

\displaystyle a^{3}- y + 1= c^{2}

Possible Answers:

\displaystyle a=\sqrt[3]{ c^{2}} + y - 1

\displaystyle a=\sqrt[3]{ c^{2}} + y - 1 or \displaystyle a=-\sqrt[3]{ c^{2}} + y - 1

\displaystyle a=\sqrt[3]{ c^{2} + y - 1} or \displaystyle a= -\sqrt[3]{ c^{2} + y - 1}

\displaystyle a=\sqrt[3]{ c^{2} + y - 1}

\displaystyle a=\sqrt[3]{ c^{2}} + y - 1 or \displaystyle a=-\sqrt[3]{ c^{2}} - y + 1

Correct answer:

\displaystyle a=\sqrt[3]{ c^{2} + y - 1}

Explanation:

\displaystyle a^{3}- y + 1= c^{2}

\displaystyle a^{3}- y + 1+ y - 1= c^{2} + y - 1

\displaystyle a^{3} = c^{2} + y - 1

\displaystyle \sqrt[3]{ a^{3} } =\sqrt[3]{ c^{2} + y - 1}

\displaystyle a=\sqrt[3]{ c^{2} + y - 1}

Example Question #52 : Equations

Solve for \displaystyle t in the equation:

\displaystyle v^{2}+ 4vt + 4t^{2} = h+30

Possible Answers:

\displaystyle t=\frac{- v + h + 60 }{2} or \displaystyle t=\frac{- v - h - 60 }{2}

\displaystyle t=- 2v + h + 30 or \displaystyle t=- 2v - h - 30

\displaystyle t=- 2v + \sqrt{ h + 30 } or \displaystyle t=- 2v - \sqrt{ h + 30 }

\displaystyle t=\frac{- v + h + 30 }{2} or \displaystyle t=\frac{- v - h - 30 }{2}

\displaystyle t=\frac{- v + \sqrt{ h + 30 }}{2} or \displaystyle t=\frac{- v - \sqrt{ h + 30 } }{2}.

Correct answer:

\displaystyle t=\frac{- v + \sqrt{ h + 30 }}{2} or \displaystyle t=\frac{- v - \sqrt{ h + 30 } }{2}.

Explanation:

 \displaystyle v^{2}+ 4vt + 4t^{2} is a perfect square trinomial:

\displaystyle v^{2}+ 4vt + 4t^{2} = v^{2}+ 2 \cdot 2 t + (2t)^{2} = (v+2t)^{2}

The equation can be rewritten as 

\displaystyle (v+2t)^{2} = h + 30

By the square-root property, since no assumption was made about the sign of any variable, 

\displaystyle v+2t = \pm\sqrt{ h + 30 }

\displaystyle v+2t -v = \pm \sqrt{ h + 30 }-v

\displaystyle 2t= -v\pm \sqrt{ h + 30 }

\displaystyle \frac{2t}{2}=\frac{- v\pm \sqrt{ h + 30 } }{2}

\displaystyle t=\frac{- v\pm \sqrt{ h + 30 }}{2}

Therefore, 

\displaystyle t=\frac{- v + \sqrt{ h + 30 }}{2} or \displaystyle t=\frac{- v - \sqrt{ h + 30 } }{2}.

Example Question #53 : Equations

Solve for \displaystyle y in the equation 

\displaystyle y^{2} + 6y + Q = 0

Possible Answers:

\displaystyle y = -3 - \sqrt{9+Q} or 

\displaystyle y = -3 - \sqrt{9-Q} or 

\displaystyle y = 3 + \sqrt{9+Q} or \displaystyle y = -3 +\sqrt{9+Q}

\displaystyle y = 3 - \sqrt{9-Q} or 

\displaystyle y = 3 - \sqrt{9-Q} or \displaystyle y = -3 -\sqrt{9-Q}

Correct answer:

\displaystyle y = -3 - \sqrt{9-Q} or 

Explanation:

The statement is a quadratic equation in \displaystyle y, so it can be solved using the quadratic formula, 

\displaystyle y = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}

where \displaystyle a = 1,b = 6, c = Q

\displaystyle y = \frac{-6 \pm \sqrt{6^{2}-4(1)(Q)}}{2 (1)}

\displaystyle y = \frac{-6 \pm \sqrt{36-4Q}}{2}

\displaystyle y = \frac{-6 \pm \sqrt{4(9-Q)}}{2}

\displaystyle y = \frac{-6 \pm 2 \sqrt{9-Q}}{2}

\displaystyle y = \frac{2\left (-3 \pm \sqrt{9-Q} \right )}{2}

\displaystyle y = -3 \pm \sqrt{9-Q}

Example Question #54 : Equations

How many distinct solutions are there to the following equation?

\displaystyle \small 3x^2-27=0

Possible Answers:

Infinitely Many

0

3

2

1

Correct answer:

2

Explanation:

We are given a classic quadratic equation, but we aren't asked for the solutions, just how many distinct solutions there are. Remember, distinct solutions are different solutions. If we get two solutions that are the same numbers, they do not count. 

The quickest way to solve this involves some factoring. 

Start by pulling out a 3

\displaystyle \small 3(x^2-9)=0

Now, within our parentheses, we have a classic difference of squares. The interior factors further to look like this.

\displaystyle \small \small 3{(x+3)(x-3)}=0

From here we can either solve the equation and count our solutions, or we can recognize that the two factors are different and therefore will give different solutions. Let's solve it by using the Zero Product Property

Solution 1

\displaystyle \small x+3=0

\displaystyle \small x=-3

Solution 2

\displaystyle \small x-3=0

\displaystyle \small x=3

Thus, we have two distinct solutions!

Example Question #55 : Solving Equations

Solve for \displaystyle g in the equation 

\displaystyle h = f+ \sqrt{3g+ 4}

Possible Answers:

\displaystyle y =\frac{ \sqrt{h - f} - 4}{3}

\displaystyle g= \frac{h^{2}-2hf+f^{2} - 12}{3}

\displaystyle g= \frac{h^{2}-2hf+f^{2} - 4}{3}

\displaystyle g= \frac{h^{2} +f^{2} - 4}{3}

\displaystyle y =\frac{ \sqrt{h - f} -12}{3}

Correct answer:

\displaystyle g= \frac{h^{2}-2hf+f^{2} - 4}{3}

Explanation:

\displaystyle h = f+ \sqrt{3g+ 4}

\displaystyle h- f = f+ \sqrt{3g+ 4} - f

\displaystyle \sqrt{3g+ 4} = h- f

\displaystyle \left (\sqrt{3g+ 4} \right )^{2}= \left (h- f \right )^{2}

\displaystyle 3g+4= h^{2}-2hf+f^{2}

\displaystyle 3g+4- 4= h^{2}-2hf+f^{2} - 4

\displaystyle 3g = h^{2}-2hf+f^{2} - 4

\displaystyle \frac{3g }{3}= \frac{h^{2}-2hf+f^{2} - 4}{3}

\displaystyle g= \frac{h^{2}-2hf+f^{2} - 4}{3}

Example Question #56 : Solving Equations

\displaystyle K is 44% of \displaystyle P.

\displaystyle 2K+3P is what percent of \displaystyle P?

Possible Answers:

\displaystyle 121 \frac{1}{3} \%

\displaystyle 388 \%

\displaystyle 135 \%

\displaystyle 332\%

\displaystyle 314\frac{2}{3} \%

Correct answer:

\displaystyle 388 \%

Explanation:

\displaystyle K is 44% of \displaystyle P, so \displaystyle 2K is \displaystyle 2 \times 44 \% = 88 \% of \displaystyle P.

Also, \displaystyle 3P is 300% of \displaystyle P.

Add these:

\displaystyle 2K+3P is \displaystyle 88 \% + 300 \% = 388 \% of \displaystyle P

Example Question #361 : Algebra

Solve for \displaystyle x:

\displaystyle -3x+18=7x-2

Possible Answers:

\displaystyle x=-5

\displaystyle x=2

\displaystyle x=-4

\displaystyle x=-2

\displaystyle x=5

Correct answer:

\displaystyle x=2

Explanation:

To solve the equation, we first group the \displaystyle x terms on one side and the constants on the other side:

\displaystyle -3x+18=7x-2

\displaystyle -10x=-20

Now we can simply divide both sides by \displaystyle -10 to solve for \displaystyle x:

\displaystyle -10x=-20

\displaystyle x=2

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors