GMAT Math : Other Lines

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Calculating The Equation Of A Line

Consider segment \displaystyle \overline{JK} which passes through the points \displaystyle \left ( 4,5\right ) and \displaystyle \left ( 144,75\right ).

Find the equation of \displaystyle \overline{JK} in the form \displaystyle y=mx+b.

Possible Answers:

\displaystyle \small y=\frac{x}{2}+3

\displaystyle \small \small y=-\frac{x}{2}+3

\displaystyle \small \small y=\frac{x}{2}+6

\displaystyle \small \small y=\frac{x}{2}-3

\displaystyle \small \small y=2x+3

Correct answer:

\displaystyle \small y=\frac{x}{2}+3

Explanation:

Given that JK passes through (4,5) and (144,75) we can find the slope as follows:

Slope is found via:

\displaystyle m=\frac{y'-y}{x'-x}

Plug in and calculate:

\displaystyle \small \small m=\frac{75-5}{144-4}=\frac{70}{140}=\frac{1}{2}

Next, we need to use one of our points and the slope to find our y-intercept. I'll use (4,5).

\displaystyle \small 5=\frac{1}{2}*4+b

\displaystyle \small b=5-2=3

So our answer is: 

\displaystyle \small y=\frac{x}{2}+3

Example Question #2 : Calculating The Equation Of A Line

Determine the equation of a line that has the points \displaystyle (-2,3) and \displaystyle (6,7) ?

Possible Answers:

\displaystyle y=-2x-2

\displaystyle y=\frac{1}{2}x+4

\displaystyle y=2x+2

\displaystyle y=-\frac{1}{2}x-4

\displaystyle y=-\frac{1}{4}x+2

Correct answer:

\displaystyle y=\frac{1}{2}x+4

Explanation:

The equation for a line in standard form is written as follows:

\displaystyle y=mx+b

Where \displaystyle m is the slope and \displaystyle b is the y intercept. We start by calculating the slope between the two given points using the following formula:

\displaystyle m=\frac{y_2-y_1}{x_2-x_1}=\frac{7-3}{6-(-2)}=\frac{4}{8}=\frac{1}{2}

Now we can plug either of the given points into the formula for a line with the calculated slope and solve for the y intercept:

\displaystyle y=mx+b

\displaystyle 3=(\frac{1}{2})(-2)+b

\displaystyle b=4

We now have the slope and the y intercept of the line, which is all we need to write its equation in standard form:

\displaystyle y=\frac{1}{2}x+4

Example Question #7 : Calculating The Equation Of A Line

Give the equation of the line that passes through the \displaystyle y-intercept and the vertex of the parabola of the equation

\displaystyle y = x^{2} + 5x - 6.

Possible Answers:

\displaystyle y=6x-6

\displaystyle y=\frac{5}{2 } x - 6

\displaystyle y = -6x+6

\displaystyle y=-\frac{5}{2 } x + 6

\displaystyle y=-x-6

Correct answer:

\displaystyle y=\frac{5}{2 } x - 6

Explanation:

The \displaystyle y-intercept of the parabola of the equation can be found by substituting 0 for \displaystyle x:

\displaystyle y = x^{2} + 5x - 6

\displaystyle y = 0^{2} + 5 (0) - 6

\displaystyle y = -6

This point is \displaystyle (0, -6).

The vertex of the parabola of the equation \displaystyle y = a x^{2} + bx+c has \displaystyle x-coordinate \displaystyle - \frac{b}{2a}, and its \displaystyle y-coordinate can be found using substitution for \displaystyle x. Setting \displaystyle a = 1 and \displaystyle b= 5:

\displaystyle x = - \frac{b}{2a} = - \frac{5}{2 \cdot 1} = - \frac{5}{2 }

\displaystyle y = \left ( - \frac{5}{2 } \right )^{2} + 5 \left ( - \frac{5}{2 } \right ) - 6

\displaystyle y = \frac{25}{4 } - \frac{25}{2 } - 6

\displaystyle y = \frac{25}{4 } - \frac{50}{4 } - \frac{24}{4}

\displaystyle y = - \frac{49}{4 }

The vertex is \displaystyle \left (- \frac{5}{2 },- \frac{49}{4 } \right )

The line connects the points \displaystyle (0, -6) and \displaystyle \left (- \frac{5}{2 },- \frac{49}{4 } \right ). Its slope is

\displaystyle m= \frac{y_{2} - y_{1}}{x_{2} - x_{1}}

\displaystyle = \frac{-6-\left ( - \frac{49}{4 } \right )}{0 - \left (- \frac{5}{2 } \right )}

\displaystyle = \frac{-\frac{24 }{4 } + \frac{49}{4 } }{ \frac{5}{2 } }

\displaystyle = \frac{ \frac{25}{4 } }{ \frac{5}{2 } }

\displaystyle = \frac{25}{4 } \cdot \frac{2 } {5}

\displaystyle =\frac{5}{2 }

Since the line has \displaystyle y-intercept \displaystyle (0, -6) and slope \displaystyle m =\frac{5}{2 }, the equation of the line is \displaystyle y=\frac{5}{2 } x + (- 6), or \displaystyle y=\frac{5}{2 } x - 6.

Example Question #1 : Calculating The Slope Of A Line

What is the slope of the line \displaystyle Ax + 2Ay = 3A ?

Possible Answers:

\displaystyle \frac{A}{2}

\displaystyle -\frac{1}{2}

\displaystyle -\frac{A}{2}

\displaystyle -2

\displaystyle -\frac{2}{A}

Correct answer:

\displaystyle -\frac{1}{2}

Explanation:

Rewrite this equation in slope-intercept form: \displaystyle y = mx + b, where \displaystyle m is the slope.

\displaystyle Ax + 2Ay = 3A

\displaystyle 2Ay = - Ax + 3A

\displaystyle \frac{2Ay}{2A} = \frac{- Ax + 3A}{2A}

\displaystyle y = -\frac{1}{2}x+ \frac{3}{2}

The slope is the coefficient of \displaystyle x, which is \displaystyle -\frac{1}{2}.

Example Question #682 : Geometry

Give the slope of the line of the equation: \displaystyle 0.4x - 0.5y = 20

Possible Answers:

\displaystyle -\frac{5}{4}

\displaystyle -2

\displaystyle -\frac{4}{5}

\displaystyle \frac{4}{5}

\displaystyle \frac{5}{4}

Correct answer:

\displaystyle \frac{4}{5}

Explanation:

Rewrite in the slope-intercept form \displaystyle y = mx + b:

\displaystyle 0.4x - 0.5y = 20

\displaystyle \left (0.4x - 0.5y \right )\cdot 10 = 20 \cdot 10

\displaystyle \left (0.4x \right )\cdot 10-\left ( 0.5y \right )\cdot 10 = 200

\displaystyle 4x-5y = 200

\displaystyle 4x-4x-5y = 200-4x

\displaystyle -5y = -4x+ 200

\displaystyle -5y \div (-5)=\left ( -4x+ 200 \right )\div (-5)

\displaystyle y=\left ( -4x \right ) \div (-5)+\left ( 200 \right ) \div (-5)

\displaystyle y= \frac{4}{5}x-40

The slope is the coefficient of \displaystyle x, which is \displaystyle \frac{4}{5}.

Example Question #1 : Calculating The Slope Of A Line

Give the slope of the line of the equation: \displaystyle \frac{}{}\displaystyle \frac{2}{5}x + \frac{6}{7}y = 9

Possible Answers:

\displaystyle -\frac{7}{15}

\displaystyle \frac{21}{2}

\displaystyle \frac{45}{2}

\displaystyle -\frac{15}{7}

\displaystyle \frac{12}{35}

Correct answer:

\displaystyle -\frac{7}{15}

Explanation:

Rewrite in the slope-intercept form \displaystyle y = mx + b:

\displaystyle \frac{2}{5}x + \frac{6}{7}y = 9

\displaystyle \frac{2}{5}x - \frac{2}{5}x + \frac{6}{7}y = - \frac{2}{5}x+ 9

\displaystyle \frac{6}{7}y = - \frac{2}{5}x+ 9

\displaystyle \frac{6}{7}y \cdot \frac{7}{6}=\left ( - \frac{2}{5}x+ 9 \right )\cdot \frac{7}{6}

\displaystyle y=- \frac{2}{5}\cdot \frac{7}{6}x+ 9 \cdot \frac{7}{6}

\displaystyle y=-\frac{7}{15}x+ \frac{21}{2}

The slope is the coefficient of \displaystyle x, which is \displaystyle -\frac{7}{15}

Example Question #681 : Geometry

Give the slope of the line of the equation

\displaystyle 5y = x - 7

Possible Answers:

\displaystyle -\frac{1}{5}

\displaystyle \frac{7}{5}

\displaystyle 5

\displaystyle -\frac{7}{5}

\displaystyle \frac{1}{5}

Correct answer:

\displaystyle \frac{1}{5}

Explanation:

Rewrite in the slope-intercept form \displaystyle y = mx + b:

\displaystyle 5y = x - 7

\displaystyle \frac{1}{5} \cdot 5y = \frac{1}{5} \cdot \left ( x - 7 \right )

The slope is the coefficient of \displaystyle x, or \displaystyle \frac{1}{5}.

Example Question #2 : Calculating The Slope Of A Line

What is the slope of the line that contains \displaystyle (1,4) and \displaystyle (7,10)?

Possible Answers:

\displaystyle \frac{3}{2}

\displaystyle \frac{2}{3}

\displaystyle \frac{14}{8}

\displaystyle 1

Correct answer:

\displaystyle 1

Explanation:

The slope formula is:

\displaystyle m= \frac{y_{2}-y_{1}}{x_{2}-x_{1}}

\displaystyle (1,4)\ and\ (7,10)

\displaystyle m= \frac{7-1}{10-4}

\displaystyle m= \frac{6}{}6

\displaystyle m=1

Example Question #683 : Geometry

What is the slope of the line that contains \displaystyle (1,2) and \displaystyle (5,2)?

Possible Answers:

\displaystyle \frac{4}{6}

\displaystyle 0

\displaystyle \frac{6}{4}

\displaystyle \frac{1}{4}

Correct answer:

\displaystyle 0

Explanation:

The slope formula is:

\displaystyle m= \frac{y_{2}-y_{1}}{x_{2}-x_{1}}

\displaystyle (1,2)\ and\ (5,2)

\displaystyle m=\frac{2-2}{5-1}

\displaystyle m=\frac{0}{4}

\displaystyle m=0

Example Question #11 : Other Lines

What is the slope of the line that contains \displaystyle (-2,-1) and \displaystyle (-8,7)?

Possible Answers:

\displaystyle -\frac{3}{4}

\displaystyle \frac{3}{4}

\displaystyle -\frac{4}{3}

\displaystyle \frac{4}{3}

Correct answer:

\displaystyle -\frac{4}{3}

Explanation:

The slope formula is:

\displaystyle m= \frac{y_{2}-y_{1}}{x_{2}-x_{1}}

\displaystyle (-2,-1)\ and\ (-8,7)

\displaystyle m=\frac{7-(-1)}{-8-(-2)}

\displaystyle m=\frac{7+1}{-8+2}

\displaystyle m=\frac{8}{-6}

\displaystyle m=-\frac{4}{3}

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors