GMAT Math : GMAT Quantitative Reasoning

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #5 : Squaring / Square Roots / Radicals

Which of the following is equal to the following expression?

\displaystyle \sqrt{(16)(8)+(32)(20)}

Possible Answers:

\displaystyle 2^{3}\sqrt{6}

\displaystyle 2^{7}\sqrt{5}

\displaystyle 2^{3}\sqrt{10}

\displaystyle 2^4\sqrt{3}

\displaystyle 2^{4}\sqrt{5}

Correct answer:

\displaystyle 2^4\sqrt{3}

Explanation:

\displaystyle \sqrt{(16)(8)+(32)(20)}

First, break down the components of the square root:

\displaystyle \sqrt{(2^{4})(2^{3})+(2^{5})(2^{2})\times 5}

Combine like terms. Remember, when multiplying exponents, add them together:

\displaystyle \sqrt{(2^{7})+(2^{7})\times5}

Factor out the common factor of \displaystyle 2^7:

\displaystyle \sqrt{(2^{7})(1+5)}

\displaystyle \sqrt{(2^7)\times6}

Factor the \displaystyle 6:

\displaystyle \sqrt{(2^7)\times2\times3}

Combine the factored \displaystyle 2 with the \displaystyle 2^7:

\displaystyle \sqrt{(2^{8})\times3}

Now, you can pull \displaystyle \sqrt{2^8} out from underneath the square root sign as \displaystyle 2^4:

\displaystyle 2^4\sqrt{3}

Example Question #6 : Squaring / Square Roots / Radicals

Which of the following expressions is equal to the following expression?

\displaystyle \sqrt{(27)(45)(125)}

Possible Answers:

\displaystyle 75\sqrt{20}

\displaystyle 125\sqrt{27}

\displaystyle 205\sqrt{3}

\displaystyle 225\sqrt{3}

\displaystyle 135\sqrt{5}

Correct answer:

\displaystyle 225\sqrt{3}

Explanation:

\displaystyle \sqrt{(27)(45)(125)}

First, break down the component parts of the square root:

\displaystyle \sqrt{(3^{3})(5\times 3^{2})(5^{3})}

Combine like terms in a way that will let you pull some of them out from underneath the square root symbol:

\displaystyle \sqrt{(5^{4})(3^4)(3)}

Pull out the terms with even exponents and simplify:

\displaystyle (5^{2})(3^{2})\sqrt{3}=225\sqrt{3}

Example Question #32 : Powers & Roots Of Numbers

Which of the following is equal to the twelfth power of the cube root of \displaystyle x?

Assume \displaystyle x to be positive.

Possible Answers:

\displaystyle x^{\frac{1}{4}}

\displaystyle \frac{1}{x^{4}}

\displaystyle x^{4}

\displaystyle \frac{1}{x^{9}}

\displaystyle x^{\frac{1}{9}}

Correct answer:

\displaystyle x^{4}

Explanation:

The cube root of \displaystyle x is \displaystyle x raised to the power of one third, or \displaystyle x^{\frac{1}{3}}. This raised to the power of twelve is

\displaystyle \left (x^{\frac{1}{3}} \right )^{12} = x^{\frac{1}{3} \cdot 12} = x^{4}

Example Question #31 : Understanding Powers And Roots

Which of the following expressions is equal to \displaystyle 10,000 ^{-\frac{1}{3}} ?

Possible Answers:

\displaystyle \frac{ \sqrt[3]{10 0 }}{10 0}

\displaystyle - 10 \sqrt[3]{100}

\displaystyle - 10\sqrt[3]{10}

\displaystyle \frac{ \sqrt[3]{10 0 }}{10}

\displaystyle \frac{ \sqrt[3]{10 }}{10 0}

Correct answer:

\displaystyle \frac{ \sqrt[3]{10 0 }}{10 0}

Explanation:

\displaystyle 10,000 ^{-\frac{1}{3}}

\displaystyle = \frac{1}{10,000^{\frac{1}{3}}}

\displaystyle = \frac{1}{\sqrt[3]{10,000 }}

\displaystyle = \frac{1}{\sqrt[3]{1,000 }\cdot \sqrt[3]{1 0 }}

\displaystyle = \frac{1}{10\sqrt[3]{1 0 }}

\displaystyle = \frac{ \sqrt[3]{10 0 }}{10\sqrt[3]{1 0 }\cdot \sqrt[3]{10 0 }}

\displaystyle = \frac{ \sqrt[3]{10 0 }}{10 \cdot \sqrt[3]{1, 00 0 }}

\displaystyle = \frac{ \sqrt[3]{10 0 }}{10 \cdot 10}

\displaystyle = \frac{ \sqrt[3]{10 0 }}{10 0}

Example Question #32 : Powers & Roots Of Numbers

Assume \displaystyle x to be positive.

Multiply the eighth power of the fourth root of \displaystyle x by the fourth power of the eighth root of \displaystyle x. What is the product?

Possible Answers:

\displaystyle 1

\displaystyle \sqrt[4]{x}

\displaystyle x^{2}\sqrt{x}

\displaystyle x^{4}

\displaystyle \sqrt[5]{x^{2}}

Correct answer:

\displaystyle x^{2}\sqrt{x}

Explanation:

The fourth root of \displaystyle x is \displaystyle x^{ \frac{1}{4}}; the eighth power of this is \displaystyle \left (x^{ \frac{1}{4}} \right )^{8} = x^{\frac{1}{4}\cdot 8} = x^{2}.

The eighth root of \displaystyle x is \displaystyle x^{ \frac{1}{8}}; the fourth power of this is \displaystyle \left (x^{ \frac{1}{8}} \right )^{4} = x^{\frac{1}{8}\cdot 4} = x^{ \frac{1}{2}} = \sqrt{x}.

The product of these expressions is \displaystyle x^{2}\sqrt{x}.

Example Question #31 : Understanding Powers And Roots

Which of the following is equal to the eighth root of the square of \displaystyle x?

Assume \displaystyle x to be positive.

Possible Answers:

The fourth power of \displaystyle x.

The fourth root of \displaystyle x

The sixteenth power of \displaystyle x.

The sixteenth root of \displaystyle x.

The sixth root of \displaystyle x

Correct answer:

The fourth root of \displaystyle x

Explanation:

The square of \displaystyle x is \displaystyle x^{2}.  The eighth root of \displaystyle x^{2} is \displaystyle x^{2} raised to the power of \displaystyle \frac {1}{8}, or 

\displaystyle \left (x^{2} \right )^{\frac{1}{8}} = x ^{2 \cdot \frac{1}{8}} = x^{\frac{1}{4}}

This is equivalent to \displaystyle \sqrt[4]{x}, the fourth root of \displaystyle x.

Example Question #33 : Powers & Roots Of Numbers

Which of the following numbers has a rational square root and a rational cube root?

Possible Answers:

\displaystyle 10,000,000

\displaystyle 100,000,000

\displaystyle 1,000,000

\displaystyle 10,000

\displaystyle 100,000

Correct answer:

\displaystyle 1,000,000

Explanation:

Each of the choices is a power of 10, so rewrite each choice as such:

\displaystyle 10,000 = 10^{4}

\displaystyle 100,000 = 10^{5}

\displaystyle 1,000,000 = 10^{6}

\displaystyle 10,000,000 = 10^{7}

\displaystyle 100,000,000 = 10^{8}

Since 10 itself does not have a rational square root, a necessary and sufficient condition for \displaystyle 10^{N} to have a rational square root - that is, for

\displaystyle \sqrt{10^{N} }= \left (10^{N} \right )^{\frac{1}{2}} = 10^{\frac{N}{2} } 

to be rational - is for \displaystyle \frac{N}{2} to be an integer. This allows us to eliminate \displaystyle 100,000 = 10^{5} and \displaystyle 10,000,000 = 10^{7}

Similarly, for \displaystyle 10^{N} to have a rational cube root, \displaystyle \frac{N}{3} must be an integer. This allows us to eliminate \displaystyle 10,000 = 10^{4} and \displaystyle 100,000,000 = 10^{8}.

\displaystyle 1,000,000 = 10^{6} is left. \displaystyle 1,000,000 is the correct choice.

Example Question #34 : Powers & Roots Of Numbers

Assume \displaystyle x to be negative.

Add the tenth power of the fifth root of \displaystyle x to the fifth root of the tenth power of \displaystyle x. What is the expression?

Possible Answers:

\displaystyle 0

\displaystyle 2 \sqrt{x}

\displaystyle 2x^{2}

\displaystyle -2 \sqrt{x}

\displaystyle -2x^{2}

Correct answer:

\displaystyle 2x^{2}

Explanation:

The tenth power of the fifth root of \displaystyle x can be found as follows:

The fifth root of \displaystyle x is \displaystyle \sqrt[5]{x} = x^{\frac{1}{5}}; the tenth power of this is \displaystyle \left ( x^{\frac{1}{5}} \right )^{10} = x^{\frac{1}{5}\cdot 10} = x^{2}.

The tenth power of \displaystyle x is \displaystyle x^{10}; the fifth root of this is \displaystyle \left ( x ^{10} \right )^{\frac{1}{5}} = x^{10 \cdot \frac{1}{5}} = x^{2}

The two expressions are equivalent, so they add up to \displaystyle 2x^{2}.

Example Question #34 : Powers & Roots Of Numbers

Which of the following is equivalent to \displaystyle x^{-\frac{3}{4}}?

Possible Answers:

\displaystyle \frac{1}{\sqrt[4]{x^3}}

\displaystyle \frac{1}{\sqrt[3]{x^4}}

\displaystyle x

Correct answer:

\displaystyle \frac{1}{\sqrt[4]{x^3}}

Explanation:

This question requires that you understand negative exponents and fractional exponents. To make a negative exponent positive, simply switch its location in the fraction, so this:

\displaystyle x^{-\frac{3}{4}}

becomes:

\displaystyle \large \frac{1}{x^{\frac{3}{4}}}

Then, we need to recognize how to rewrite fractional exponents. In a fractional exponent, the numerator stays as the power to which we are raising our base. The denominator becomes the index of our root. Thus, our fractional exponent becomes:

\displaystyle \frac{1}{\sqrt[4]{x^3}}

Four was the denominator of our fractional exponent, so it became the index of our root. In other words, something raised to the power of \displaystyle \frac{1}{4} is the same thing as taking the fourth root of that something.

Example Question #61 : Arithmetic

How can \displaystyle 2^{n}\cdot2^{n+1} be rewritten ?

Possible Answers:

\displaystyle 2^{2n+1}

\displaystyle 4^{n+1}

\displaystyle 2^{2n+2}

\displaystyle 2^{n^{2}+1}

\displaystyle 2^{n^{2}+n}

Correct answer:

\displaystyle 2^{2n+1}

Explanation:

To solve this problem, we must remember exponent rules. The powers here need to be added, since the powers are both raising to the same number. The final answer is \displaystyle 2^{n+n+1} or \displaystyle 2^{2n+1}.

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors