All GMAT Math Resources
Example Questions
Example Question #1 : Dsq: Calculating The Angle Of An Intersection
Note: Figure NOT drawn to scale.
Refer to the above diagram. Evaluate .
Statement 1:
Statement 2:
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
We show that both statements together give insufficient information. Assume both statements together. Consider the following two cases:
Case 1:
Since the angles of measures and form linear pairs with the angle of measure , each is supplementary to that angle and, subsequently, .
The angle of measure is vertical to the angle of measure , so the two must be congruent; .
From Statement 1,
Since and , then .
These values are therefore consistent with the diagram and with both statements.
Case 2:
We can find the values of the other variables as before:
, so .
Again, all values are consistent with the diagram and both statements.
Since at least two different values of satify the conditions, the two statements are insufficient.
Example Question #6 : Dsq: Calculating The Angle Of An Intersection
Note: Figure NOT drawn to scale. Do not assume lines are parallel or perpendicular simply by appearance.
Evaluate .
Statement 1:
Statement 2:
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 alone gives us that , but reveals no clues about any of the eight angle measures. From Statement 2 alone, that , we can assume that , and all have measure , but no clues are given about any of the other four angles—in particular, .
Assume both statements are true. From Statement 1, , and by way of the Parallel Postulate, corresponding angles have the same measure—in particular, . From Statement 2, we know that . From these two statements, .
Example Question #5 : Dsq: Calculating The Angle Of An Intersection
Note: Figure NOT drawn to scale.
Give the measure of in the above diagram.
Statement 1: is an arc of measure .
Statement 2: is an arc of measure .
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
If two chords of a circle intersect inside it, then the measure of an angle formed is equal to the arithmetic mean of the measures of arc it intercepts and the arc its vertical angle intercepts. In other words, in this diagram,
Both arc measures are needed to find the measure of the angle. Neither statement alone give both; the two together do.
Example Question #1 : Squares
Find the length of the diagonal of square G.
I) The area of G is fathoms squared.
II) The side length of G is fathoms.
Each statement alone is enough to solve the question.
Both statements taken together are sufficient to solve the problem.
Statement 2 is sufficient to solve the question, but statement 1 is not sufficient to solve the question.
Neither statement is sufficient to solve the question. More information is needed.
Statement 1 is sufficient to solve the question, but statement 2 is not sufficient to solve the question.
Each statement alone is enough to solve the question.
We can use the side length and the Pythagorean Theorem to find the diagonal of a square.
We can find side length from area, so we could solve this with either I or II.
Example Question #1 : Squares
The circle with center is inscribed in square . What is the length of diagonal ?
(1) The area of the circle is .
(2) The side of the square is .
Statement 1 alone is sufficient.
Statements 1 and 2 together are not sufficient.
Both statements together are sufficient.
Statement 2 alone is sufficient.
Each statement alone is sufficient.
Each statement alone is sufficient.
The diagonal of the square can be calculated as long as we have any information about the lengths or area of the circle or of the square.
Statement 1, by giving us the area of the circle, allows us to find the radius of the circle, which is half the length of the side. Therefore statement 1 alone is sufficient.
Statement 2, by telling us the length of a side of the square is also sufficient, and would allow us to calculate the length of the diagonal.
Therefore, each statement alone is sufficient.
Example Question #2 : Squares
On your college campus there is a square grassy area where people like to hangout and enjoy the sun. While walking with some friends, you decide to take the shortest distance to the corner of the square opposite from where you are. Find the distance you traveled.
I) The perimeter of the square is meters.
II) The square covers an area of square meters.
Either statement is sufficient to answer the question.
Neither statement is sufficient to answer the question. More information is needed.
Statement II is sufficient to answer the question, but statement I is not sufficient to answer the question.
Both statements are needed to answer the question.
Statement I is sufficient to answer the question, but statement II is not sufficient to answer the question.
Either statement is sufficient to answer the question.
We are asked to find the length of a diagonal of a square.
We can do this if we have the side length. We can find side length from either perimeter or area.
From Statement I)
In this case, our side length is 15 meters.
We can use this and Pythagorean Theorem or 45/45/90 triangles to find our diagonal.
From Statement II)
From here, we can plug the side length into the Pythagorean Theorem like before and solve for the diagonal.
Therefore, either statement alone is sufficient to answer the question.
Example Question #4 : Quadrilaterals
Find the length of the diagonal of square A if the diagonal of square B is .
- The perimeter of square B is
- The area of square A is
Statement 2 alone is sufficient, but statement 1 alone is not sufficient to answer the question.
Statement 1 alone is sufficient, but statement 2 alone is not sufficient to answer the question.
Statements 1 and 2 are not sufficient, and additional data is needed to answer the question.
Each statement alone is sufficient to answer the question.
Both statements taken together are sufficient to answer the question, but neither statement alone is sufficient.
Statement 2 alone is sufficient, but statement 1 alone is not sufficient to answer the question.
Statement 1: The information provided would only be useful if the ratio of square A to square B was known.
Statement 2: We need the length of the square's side to find the length of the diagonal and we can use the area to solve for the length of the side.
Now we can find the diagonal:
Example Question #5 : Dsq: Calculating The Length Of The Diagonal Of A Square
What is the length of the diagonal of the square?
- The area of the square is .
- The perimeter is .
Each statement alone is sufficient to answer the question.
Statement 2 alone is sufficient, but statement 1 alone is not sufficient to answer the question.
Statements 1 and 2 are not sufficient, and additional data is needed to answer the question.
Both statements taken together are sufficient to answer the question, but neither statement alone is sufficient.
Statement 1 alone is sufficient, but statement 2 alone is not sufficient to answer the question.
Each statement alone is sufficient to answer the question.
The length of the diagonal of a square is given by , where represents the square's side. As such, we need the length of the square's side.
Statement 1:
Statement 2:
Both statements provide us with the length of the square's side.
Example Question #5 : Quadrilaterals
The diagonal bracing of a square pallet measures . What is the area of the pallet?
To solve this problem, we must recognize that the diagonal bisector creates identical 45˚ - 45˚ - 90˚ right triangles. This means that, if the sides of the square are then the diagonal must be . We can then set up the following equation:
If then the area must be:
Example Question #1 : Quadrilaterals
Is Rectangle a square?
Statement 1:
Statement 2:
EITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
A rectangle, by definition, is a parallelogram. Statement 1 asserts that the diagonals of this parallelogram are perpendicular. Statement 2 asserts that adjacent sides of the parallelogram are congruent, so, since opposite sides are also congruent, this makes all four sides congruent. From either statement alone, it can be deduced that Rectangle is a rhombus. A figure that is a rectangle and a rhombus is by definition a square.