GED Math : Exponents

Study concepts, example questions & explanations for GED Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #471 : Numbers And Operations

Order from least to greatest:

\displaystyle 7^{-2}, 5 ^{-2}, 2 ^{-6}

Do not use a calculator.

Possible Answers:

\displaystyle 7^{-2}, 2 ^{-6},5 ^{-2}

\displaystyle 5 ^{-2} , 2 ^{-6}, 7^{-2}

\displaystyle 2 ^{-6}, 7^{-2}, 5 ^{-2}

\displaystyle 2 ^{-6}, 5 ^{-2} , 7^{-2}

Correct answer:

\displaystyle 2 ^{-6}, 7^{-2}, 5 ^{-2}

Explanation:

For any nonzero \displaystyle a and for any \displaystyle m\displaystyle a^{-m} = \frac{1}{a^{m}}.

 

\displaystyle 7^{-2} = \frac{1}{7^{2}} = \frac{1}{7 \times 7 } = \frac{1}{49}

\displaystyle 5 ^{-2} = \frac{1}{5 ^{2}} = \frac{1}{5 \times 5} = \frac{1}{25}

\displaystyle 2 ^{-6} = \frac{1}{2 ^{6}} = \frac{1}{2 \times 2 \times 2 \times 2 \times 2 \times 2 } = \frac{1}{64}

Since \displaystyle 25 < 49 < 64

we can reverse the order when taking their reciprocals:

\displaystyle \frac{1}{64} < \frac{1}{49}< \frac{1}{25}

That is, \displaystyle 2 ^{-6}< 7^{-2}< 5 ^{-2}.

Example Question #472 : Numbers And Operations

Order from least to greatest:

\displaystyle \left (-5 \right )^{-3}, \left (-4 \right )^{-3}, \left ( -2\right ) ^{-7}

Do not use a calculator.

Possible Answers:

\displaystyle \left ( -2\right ) ^{-7}, \left (-4 \right )^{-3} , \left (-5 \right )^{-3}

\displaystyle \left ( -2\right ) ^{-7} , \left (-5 \right )^{-3}, \left (-4 \right )^{-3}

\displaystyle \left (-4 \right )^{-3} , \left (-5 \right )^{-3} , \left ( -2\right ) ^{-7}

\displaystyle \left (-5 \right )^{-3} , \left (-4 \right )^{-3} , \left ( -2\right ) ^{-7}

Correct answer:

\displaystyle \left (-4 \right )^{-3} , \left (-5 \right )^{-3} , \left ( -2\right ) ^{-7}

Explanation:

For any nonzero \displaystyle a and for any \displaystyle m\displaystyle a^{-m} = \frac{1}{a^{m}}.

Also, any negative number raised to the power of an odd number is equal to the opposite of the same power of its absolute value.

Combine these concepts:

\displaystyle \left (-5 \right )^{-3} = \frac{1 }{\left (-5 \right )^{3}} = \frac{1}{- (5^{3})} = -\frac{1}{125}

\displaystyle \left (-4 \right )^{-3} = \frac{1 }{\left (-4 \right )^{3}} = \frac{1}{- (4^{3})} = -\frac{1}{64}

\displaystyle \left ( -2\right ) ^{-7} = \frac{1}{\left ( -2\right )^{7}} = \frac{1}{- \left ( 2 ^{7}\right )} = - \frac{1}{128}

Since \displaystyle 64< 125 < 128,

the reciprocals are in reverse order of this:

\displaystyle \frac{1}{64}> \frac{1}{125 }>\frac{1}{128}

Their opposites reverse again:

\displaystyle -\frac{1}{64}< - \frac{1}{125 }< -\frac{1}{128}

Or, equivalently,

\displaystyle \left (-4 \right )^{-3} < \left (-5 \right )^{-3} < \left ( -2\right ) ^{-7}.

Example Question #151 : Complex Operations

Solve:  \displaystyle 2^2\div 4^{3}

Possible Answers:

\displaystyle \frac{1}{16}

\displaystyle \frac{1}{12}

\displaystyle \frac{1}{2}

\displaystyle \frac{1}{32}

\displaystyle 2

Correct answer:

\displaystyle \frac{1}{16}

Explanation:

Evaluate each term first.

\displaystyle 2^2 =4

\displaystyle 4^3 = 64

Divide 4 with 64 and reduce.

\displaystyle \frac{4}{64} = \frac{(4\times 1)}{(4\times 16)}

The answer is:  \displaystyle \frac{1}{16}

Example Question #11 : Exponents

Simplify:  \displaystyle \frac{2^3}{6^2}

Possible Answers:

\displaystyle \frac{1}{27}

\displaystyle \frac{1}{3}

\displaystyle \frac{2}{9}

\displaystyle \frac{2}{3}

\displaystyle \frac{2}{27}

Correct answer:

\displaystyle \frac{2}{9}

Explanation:

Do not subtract the exponents or divide the bases!  We will need to compute the numerator and denominator first.

\displaystyle \frac{2^3}{6^2} = \frac{(2)(2)(2)}{(6)(6)} = \frac{8}{36}

Reduce this fraction.

The answer is:  \displaystyle \frac{2}{9}

Example Question #482 : Numbers And Operations

Divide the following:

\displaystyle m^6 \div m^2

Possible Answers:

\displaystyle m^3

\displaystyle m^1

\displaystyle m^3

\displaystyle m^2

\displaystyle m^4

Correct answer:

\displaystyle m^4

Explanation:

To divide variables with exponents, we will use the following formula:

\displaystyle x^a \div x^b = x^{a-b}

So, we get

\displaystyle m^6 \div m^2 = m^{6-2}

\displaystyle m^6 \div m^2 = m^4

Example Question #154 : Complex Operations

Multiply the following:

\displaystyle h^7 \cdot h^2

Possible Answers:

\displaystyle h^{14}

\displaystyle h^3

\displaystyle h^7

\displaystyle h^5

\displaystyle h^9

Correct answer:

\displaystyle h^9

Explanation:

To multiply variables with exponents, we will use the following formula:

\displaystyle x^a \cdot x^b = x^{a+b}

So we get

\displaystyle h^7 \cdot h^2 = h^{7+2}

\displaystyle h^7 \cdot h^2 = h^9

Example Question #155 : Complex Operations

Divide the following:

\displaystyle a^{12} \div a^4

Possible Answers:

\displaystyle a^8

\displaystyle a^2

\displaystyle a^{16}

\displaystyle a^3

\displaystyle a^4

Correct answer:

\displaystyle a^8

Explanation:

To divide variables with exponents, we will use the following formula:

\displaystyle x^a \div x^b = x^{a-b}

Now, let’s divide.  We get

\displaystyle a^{12} \div a^4 = a^{12-4}

\displaystyle a^{12} \div a^4 = a^8

Example Question #156 : Complex Operations

Multiply the following:

\displaystyle x^9 \cdot x^2

Possible Answers:

\displaystyle x^{11}

\displaystyle x^4

\displaystyle x^{18}

\displaystyle x^3

\displaystyle x^{12}

Correct answer:

\displaystyle x^{11}

Explanation:

To multiply variables with exponents, we will use the following formula:

\displaystyle x^a \cdot x^b = x^{a+b}

Now, we will multiply. We get

\displaystyle x^9 \cdot x^2 = x^{9 + 2}

\displaystyle x^9 \cdot x^2 = x^{11}

Example Question #12 : Exponents

Divide:  \displaystyle \frac{(-2)^3}{(-4)^{-1}}

Possible Answers:

\displaystyle -32

\displaystyle 2

\displaystyle \frac{1}{2}

\displaystyle 32

\displaystyle -2

Correct answer:

\displaystyle 32

Explanation:

Simplify the numerator.

\displaystyle (-2)^3=(-2)(-2)(-2) = -8

Simplify the denominator.

\displaystyle (-4)^{-1} = \frac{1}{(-4)^1} =-\frac{1}{4}

Divide the terms.

\displaystyle \frac{(-2)^3}{(-4)^{-1}} = \frac{-8}{-\frac{1}{4}} = -8\div- \frac{1}{4}

Take the reciprocal of the second term and change the sign to a multiplication.

\displaystyle -8\div- \frac{1}{4} = -8\times -4 = 32

The answer is:  \displaystyle 32

Example Question #157 : Complex Operations

Divide the following:

\displaystyle n^8 \div n^2

Possible Answers:

\displaystyle n^3

\displaystyle n^2

\displaystyle n^6

\displaystyle n^{10}

\displaystyle n^4

Correct answer:

\displaystyle n^6

Explanation:

To divide variables with exponents, we will use the following formula:

\displaystyle x^a \div x^b = x^{a-b}

So, we get

\displaystyle n^8 \div n^2 = n^{8-2}

\displaystyle n^8 \div n^2 = n^6

Learning Tools by Varsity Tutors