GED Math : Single-Variable Algebra

Study concepts, example questions & explanations for GED Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Simplifying, Distributing, And Factoring

Factor completely:

\displaystyle 36x^{2} - 49y^{2}

Possible Answers:

\displaystyle \left (6x + 7y \right )\left (6x - 7y \right )

\displaystyle \left (6x - 7y \right ) ^{2}

\displaystyle \left (12x + 7y \right )\left (3x - 7y \right )

\displaystyle \left (3x + 7y \right )\left (12x - 7y \right )

Correct answer:

\displaystyle \left (6x + 7y \right )\left (6x - 7y \right )

Explanation:

The polynomial is the difference of squares and can be factored using the pattern 

\displaystyle A^{2} - B ^{2} = (A+B)(A-B)

where 

\displaystyle A = 6x, B = 7y

as seen here:

\displaystyle 36x^{2} - 49y^{2}

\displaystyle = 6^{2}x^{2} - 7^{2}y^{2}

\displaystyle = \left (6 x \right )^{2} - \left (7 y \right )^{2}

\displaystyle = \left (6x + 7y \right )\left (6x - 7y \right )

Example Question #31 : Simplifying, Distributing, And Factoring

Which of the following is a factor of the polynomial \displaystyle 8x ^{3}y - 20x ^{2}y ^{2} ?

Possible Answers:

\displaystyle 2- 5xy

\displaystyle 2x - 5y

\displaystyle 2xy - 5

\displaystyle 2x ^{2}- 5y ^{2}

Correct answer:

\displaystyle 2x - 5y

Explanation:

The greatest common factor of the two terms is the monomial term \displaystyle 4x ^{2}y, so factor it out:

\displaystyle 8x ^{3}y - 20x ^{2}y ^{2}

\displaystyle = 4x ^{2}y \cdot 2x - 4x ^{2}y \cdot 5y

\displaystyle = 4x ^{2}y \left (2x - 5y \right )

Of the four choices, \displaystyle 2x - 5y is correct.

Example Question #32 : Simplifying, Distributing, And Factoring

Which of the following is a factor of the polynomial \displaystyle 8x ^{3}y - 20x ^{2}y ^{2} ?

Possible Answers:

\displaystyle 2- 5xy

\displaystyle 2xy - 5

\displaystyle 2x - 5y

\displaystyle 2x ^{2}- 5y ^{2}

Correct answer:

\displaystyle 2x - 5y

Explanation:

The greatest common factor of the two terms is the monomial term \displaystyle 4x ^{2}y, so factor it out:

\displaystyle 8x ^{3}y - 20x ^{2}y ^{2}

\displaystyle = 4x ^{2}y \cdot 2x - 4x ^{2}y \cdot 5y

\displaystyle = 4x ^{2}y \left (2x - 5y \right )

Of the four choices, \displaystyle 2x - 5y is correct.

Example Question #31 : Single Variable Algebra

Simplify:

\displaystyle \left (\frac{5}{t} \right )^{-3}

Possible Answers:

\displaystyle -\frac{125}{t^{3}}

\displaystyle \frac{t^{3}}{125}

\displaystyle -\frac{1 5}{t^{3}}

\displaystyle \frac{t^{3}}{1 5}

Correct answer:

\displaystyle \frac{t^{3}}{125}

Explanation:

Raise a fraction to a negative power by raising its reciprocal to the power of the absolute value of the exponent. Then apply the power of a quotient rule:

\displaystyle \left (\frac{5}{t} \right )^{-3} = \left (\frac{t}{5} \right )^{ 3} = \frac{t^{ 3}}{5^{ 3}} = \frac{t^{ 3}}{125}

Example Question #32 : Single Variable Algebra

Simplify:

\displaystyle \left (4 t^{2} \right )^{-3}

Possible Answers:

\displaystyle -\frac{12}{ t^{6}}

\displaystyle \frac{1}{ t^{6}}

\displaystyle \frac{1}{64t^{6}}

\displaystyle \frac{4}{ t^{6}}

Correct answer:

\displaystyle \frac{1}{64t^{6}}

Explanation:

To raise a number to a negative exponent, raise it to the absolute value of that exponent, then take its reciprocal. We do this, then apply the various properties of exponents:

\displaystyle \left (4 t^{2} \right )^{-3} = \frac{1}{\left (4 t^{2} \right )^{3} } = \frac{1}{4^{3} \left ( t^{2} \right )^{3} } =\frac{1}{64 t^{2 \cdot 3} } =\frac{1}{64 t^{6} }

Example Question #591 : Ged Math

Factor completely:

\displaystyle 6t ^{2} + t - 15

Possible Answers:

\displaystyle \left ( 6t - 5 \right )\left ( t + 3 \right )

\displaystyle \left ( 3t + 5 \right )\left ( 2t - 3 \right )

\displaystyle \left ( 6t + 5 \right )\left ( t - 3 \right )

\displaystyle \left ( 3t - 5 \right )\left ( 2t + 3 \right )

Correct answer:

\displaystyle \left ( 3t + 5 \right )\left ( 2t - 3 \right )

Explanation:

For a quadratic trinomial with a quadratic coefficient other than 1, use the factoring by grouping method.

First, find two integers whose product is \displaystyle 6 \times (-15) = -90 (the product of the quadratic and constant coefficients) and whose sum is 1 (the implied coefficient of \displaystyle t ). By trial and error, we find that these are \displaystyle -9, 10

Split the linear term accordingly, then factor by grouping, as follows.

\displaystyle 6t ^{2} + t - 15

\displaystyle = 6t ^{2} - 9t +10 t - 15

\displaystyle =\left ( 6t ^{2} - 9t \right )+\left (10 t - 15 \right )

\displaystyle = \left ( 3t \cdot 2t - 3t \cdot 3 \right )+\left (5 \cdot 2t - 5 \cdot 3 \right )

\displaystyle = 3t \left ( 2t - 3 \right )+ 5 \left ( 2t - 3 \right )

\displaystyle =\left ( 3t + 5 \right )\left ( 2t - 3 \right )

Example Question #33 : Simplifying, Distributing, And Factoring

Factor:

\displaystyle 4y^{3} - 12y ^{2}- 72y

Possible Answers:

\displaystyle 4y (y+2)(y-9)

\displaystyle y (y+2)(4y-9)

\displaystyle 4y (y-6)(y+3)

\displaystyle y (y-6)(4y+3)

Correct answer:

\displaystyle 4y (y-6)(y+3)

Explanation:

The greatest common factor of the terms is \displaystyle 4y, so factor it out:

\displaystyle 4y^{3} - 12y ^{2}- 72y

\displaystyle =4y \cdot y^{2} - 4y \cdot 3y - 4y \cdot 18

\displaystyle =4y \left ( y^{2} - 3y - 18 \right )

The trinomial might be able to be factored as 

\displaystyle (y+A)(y + B),

where \displaystyle AB = -18 and \displaystyle A + B = -3.

By trial and error, we find that 

\displaystyle A = -6 , B = 3,

so the factorization becomes

\displaystyle 4y (y-6)(y+3).

Example Question #33 : Single Variable Algebra

Decrease \displaystyle 8t + 72 by 40%. Which of the following will this be equal to?

Possible Answers:

\displaystyle 3.2t + 28.8

\displaystyle 3.2t + 72

\displaystyle 4.8t + 72

\displaystyle 4.8t + 43.2

Correct answer:

\displaystyle 4.8t + 43.2

Explanation:

A number decreased by 40% is equivalent to 100% of the number minus 40% of the number. This is taking 60% of the number, or, equivalently, multiplying it by 0.6. 

Therefore, \displaystyle 8t + 72 decreased by 40% is 0.6 times this, or

\displaystyle 0.6 \left (8t + 72 \right ) =4.8t + 43.2.

Example Question #34 : Single Variable Algebra

Increase \displaystyle 8x + 9y by 20%. Which of the following will this be equal to?

Possible Answers:

\displaystyle 9x + 10y

\displaystyle 8.2x+9.2y

\displaystyle 9.6x + 10.8 y

\displaystyle 9.2x+10 y

Correct answer:

\displaystyle 9.6x + 10.8 y

Explanation:

A number increased by 20% is equivalent to 100% of the number plus 20% of the number. This is taking 120% of the number, or, equivalently, multiplying it by 1.2.

Therefore, \displaystyle 8x + 9y increased by 20% is 1.2 times this, or

\displaystyle 1.2 \left (8x + 9y \right ) = 1.2 \cdot 8x + 1.2 \cdot 9y = 9.6x + 10.8 y.

Example Question #593 : Ged Math

Which of the following is a prime factor of \displaystyle n^{4} - 16n^{2} - 225?

Possible Answers:

\displaystyle n^{2}+3

\displaystyle n^{2}+9

\displaystyle n^{2}+25

\displaystyle n^{2}+75

Correct answer:

\displaystyle n^{2}+9

Explanation:

This can be most easily solved by first substituting \displaystyle t for \displaystyle n^{2}, and, subsequently, \displaystyle t^{2} for \displaystyle n^{4}:

\displaystyle n^{4} - 16n^{2} - 225

\displaystyle = t^{2} - 16t - 225

This becomes quadratic in the new variable, and can be factored as

\displaystyle \left (t +\; \; \right )\left (t +\; \; \right ),

filling out the blanks with two numbers whose sum is \displaystyle -16 and whose product is \displaystyle -225. Through some trial and error, the numbers can be seen to be \displaystyle 9, -25.

Therefore, after factoring and substituting back,

\displaystyle n^{4} - 16n^{2} - 225

\displaystyle = t^{2} - 16t - 225

\displaystyle = (t+9)(t-25)

\displaystyle = (n^{2}+9)(n^{2}-25)

The first factor, the sum of squares, is prime. The second factors as the difference of squares, so the final factorization is

\displaystyle (n^{2}+9)(n+5)(n-5).

Of the choices given, \displaystyle n^{2}+9 is correct.

Learning Tools by Varsity Tutors