All Common Core: High School - Geometry Resources
Example Questions
Example Question #11 : Derive Circle Equation: Ccss.Math.Content.Hsg Gpe.A.1
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at
The next step it to find the radius. From looking at the picture, we can see that the radius is 6. With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for , , and
We plug in the values, we get
Example Question #12 : Expressing Geometric Properties With Equations
What is the equation of the circle shown below?
In order to find the equation, we must find the coordinates of the center of the circle.
If we look at the picture,
we can see that the center is at .
The next step it to find the radius. From looking at the picture, we can see that the radius is 2.
With this information, we can plug it into the general circle equation.
The general circle equation is
Now we substitute for , , and
We plug in the values, we get
Example Question #1 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2
Find the parabolic equation, where the focus and directrix are as follows.
The first step to solving this problem, it to use the equation of equal distances.
Let's square each side
Now we expand each binomial
Now we can substitute 1 for a 10 for b and 7 for y
Now we can simplify, and solve for
So our answer is then
Example Question #1 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2
Find the parabolic equation, where the focus and the directrix are as follows.
The first step to solving this problem, it to use the equation of equal distances.
Let's square each side
Now we expand each binomial
Now we can substitute 1 for a 10 for b and 7 for y
Now we can simplify, and solve for
So our answer is then
Example Question #3 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2
Find the parabolic equation, where the focus and directrix are as follows.
The first step to solving this problem, it to use the equation of equal distances.
Let's square each side
Now we expand each binomial
Now we can substitute 1 for a 10 for b and 7 for y
Now we can simplify, and solve for
So our answer is then
Example Question #4 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2
Find the parabolic equation, where the focus and directrix are as follows.
The first step to solving this problem, it to use the equation of equal distances.
Let's square each side
Now we expand each binomial
Now we can substitute -10 for a 4 for b and -11 for y
Now we can simplify, and solve for
So our answer is then
Example Question #5 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2
Find the parabolic equation, where the focus and directrix are as follows.
The first step to solving this problem, it to use the equation of equal distances.
Let's square each side
Now we expand each binomial
Now we can substitute 6 for a -9 for b and -5 for y
Now we can simplify, and solve for
So our answer is then
Example Question #6 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2
Find the parabolic equation, where the focus and directrix are as follows.
The first step to solving this problem, it to use the equation of equal distances.
Let's square each side
Now we expand each binomial
Now we can substitute 1 for a -6 for b and -19 for y
Now we can simplify, and solve for
So our answer is then
Example Question #3 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2
Find the parabolic equation, where the focus and directrix are as follows.
The first step to solving this problem, it to use the equation of equal distances.
Let's square each side
Now we expand each binomial
Now we can substitute -10 for a 6 for b and 15 for y
Now we can simplify, and solve for
So our answer is then
Example Question #4 : Derive Parabola Equation: Ccss.Math.Content.Hsg Gpe.A.2
Find the parabolic equation, where the focus and directrix are as follows.
The first step to solving this problem, it to use the equation of equal distances.
Let's square each side
Now we expand each binomial
Now we can substitute 7 for a 5 for b and -4 for y
Now we can simplify, and solve for
So our answer is then