Common Core: 6th Grade Math : Fluently Divide Multi-Digit Numbers: CCSS.Math.Content.6.NS.B.2

Study concepts, example questions & explanations for Common Core: 6th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Fluently Divide Multi Digit Numbers: Ccss.Math.Content.6.Ns.B.2

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 93\\ 3{\overline{\smash{)}279}}\\ -\ 27 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 3\times 279\)

\(\displaystyle 3\times 90\)

\(\displaystyle 3\times 93\)

\(\displaystyle 3\times 99\)

\(\displaystyle 3\times 3\)

Correct answer:

\(\displaystyle 3\times 93\)

Explanation:

The computation shows that \(\displaystyle 279\div3=93\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 93}\\ {\color{Green} 3}{\overline{\smash{)}279}}\\ -\ 27 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 3\times93=279+0\)

Simplify.

\(\displaystyle 3\times93=279\)

The correct answer is \(\displaystyle 3\times 93\)

Example Question #2 : Fluently Divide Multi Digit Numbers: Ccss.Math.Content.6.Ns.B.2

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 72\\ 2{\overline{\smash{)}144}}\\ -\ 14 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{4\ \ }\\ -\ \ \ 4\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 2\times 72\)

\(\displaystyle 2\times 73\)

\(\displaystyle 2\times 70\)

\(\displaystyle 2\times 12\)

\(\displaystyle 2\times 92\)

Correct answer:

\(\displaystyle 2\times 72\)

Explanation:

The computation shows that \(\displaystyle 144\div2=72\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 72}\\ {\color{Green} 2}{\overline{\smash{)}144}}\\ -\ 14 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 4\ \ }\\ -\ \ \ 4\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 2\times72=144+0\)

Simplify.

\(\displaystyle 2\times72=144\)

The correct answer is \(\displaystyle 2\times 72\)

Example Question #1 : Fluently Divide Multi Digit Numbers: Ccss.Math.Content.6.Ns.B.2

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 61\\ 4{\overline{\smash{)}244}}\\ -\ 24 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{4\ \ }\\ -\ \ \ 4\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 4\times 46\)

\(\displaystyle 4\times 61\)

\(\displaystyle 4\times 60\)

\(\displaystyle 4\times 18\)

\(\displaystyle 4\times 64\)

Correct answer:

\(\displaystyle 4\times 61\)

Explanation:

The computation shows that \(\displaystyle 244\div4=61\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 61}\\ {\color{Green} 4}{\overline{\smash{)}244}}\\ -\ 24 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 4\ \ }\\ -\ \ \ 4\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 4\times61=244+0\)

Simplify.

\(\displaystyle 4\times61=244\)

The correct answer is \(\displaystyle 4\times 61\)

Example Question #2 : Fluently Divide Multi Digit Numbers: Ccss.Math.Content.6.Ns.B.2

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 11\\ 11{\overline{\smash{)}121}}\\ -\ 11 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}01{1\ \ }\\ -\ \ \ 11\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 12\times 12\)

\(\displaystyle 11\times 11\)

\(\displaystyle 11\times 21\)

\(\displaystyle 11\times 10\)

\(\displaystyle 11\times 13\)

Correct answer:

\(\displaystyle 11\times 11\)

Explanation:

The computation shows that \(\displaystyle 121\div11=11\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 11}\\ {\color{Green} 11}{\overline{\smash{)}121}}\\ -\ 11 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}01{ 1\ \ }\\ -\ \ \ 11\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 11\times11=121+0\)

Simplify.

\(\displaystyle 11\times11=121\)

The correct answer is \(\displaystyle 11\times 11\)

Example Question #392 : How To Divide

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 54\\ 2{\overline{\smash{)}108}}\\ -\ 10 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 2\times 46\)

\(\displaystyle 2\times 64\)

\(\displaystyle 2\times 56\)

\(\displaystyle 4\times 44\)

\(\displaystyle 2\times 54\)

Correct answer:

\(\displaystyle 2\times 54\)

Explanation:

The computation shows that \(\displaystyle 108\div2=54\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 54}\\ {\color{Green} 2}{\overline{\smash{)}108}}\\ -\ 10 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 2\times54=108+0\)

Simplify.

\(\displaystyle 2\times54=108\)

The correct answer is \(\displaystyle 2\times 54\)

Example Question #101 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 61\\ 2{\overline{\smash{)}122}}\\ -\ 12 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{2\ \ }\\ -\ \ \ 2\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 2\times 61\)

\(\displaystyle 2\times 76\)

\(\displaystyle 2\times 68\)

\(\displaystyle 3\times 36\)

\(\displaystyle 2\times 63\)

Correct answer:

\(\displaystyle 2\times 61\)

Explanation:

The computation shows that \(\displaystyle 122\div2=61\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 61}\\ {\color{Green} 2}{\overline{\smash{)}122}}\\ -\ 12 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 2\ \ }\\ -\ \ \ 2\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 2\times61=122+0\)

Simplify.

\(\displaystyle 2\times61=122\)

The correct answer is \(\displaystyle 2\times 61\)

Example Question #102 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 51\\ 3{\overline{\smash{)}153}}\\ -\ 15 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{3\ \ }\\ -\ \ \ 3\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 3\times 53\)

\(\displaystyle 3\times 61\)

\(\displaystyle 3\times 36\)

\(\displaystyle 3\times 51\)

\(\displaystyle 3\times 35\)

Correct answer:

\(\displaystyle 3\times 51\)

Explanation:

The computation shows that \(\displaystyle 153\div3=61\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 51}\\ {\color{Green} 3}{\overline{\smash{)}153}}\\ -\ 15 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 3\ \ }\\ -\ \ \ 3\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 3\times51=153+0\)

Simplify.

\(\displaystyle 3\times51=153\)

The correct answer is \(\displaystyle 3\times 51\)

Example Question #101 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 61\\ 3{\overline{\smash{)}183}}\\ -\ 18 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{3\ \ }\\ -\ \ \ 3\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 3\times 61\)

\(\displaystyle 3\times 68\)

\(\displaystyle 3\times 42\)

\(\displaystyle 3\times 36\)

\(\displaystyle 3\times 63\)

Correct answer:

\(\displaystyle 3\times 61\)

Explanation:

The computation shows that \(\displaystyle 183\div3=61\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 61}\\ {\color{Green} 3}{\overline{\smash{)}183}}\\ -\ 18 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 3\ \ }\\ -\ \ \ 3\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 3\times61=183+0\)

Simplify.

\(\displaystyle 3\times61=183\)

The correct answer is \(\displaystyle 3\times 61\)

Example Question #102 : Grade 6

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 63\\ 3{\overline{\smash{)}189}}\\ -\ 18 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 3\times 69\)

\(\displaystyle 3\times 83\)

\(\displaystyle 3\times 72\)

\(\displaystyle 3\times 68\)

\(\displaystyle 3\times 63\)

Correct answer:

\(\displaystyle 3\times 63\)

Explanation:

The computation shows that \(\displaystyle 189\div3=63\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 63}\\ {\color{Green} 3}{\overline{\smash{)}189}}\\ -\ 18 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 3\times63=189+0\)

Simplify.

\(\displaystyle 3\times63=189\)

The correct answer is \(\displaystyle 3\times 63\)

Example Question #401 : How To Divide

Use the computation shown to find the products:

\(\displaystyle \frac{\begin{array}[b]{r} \ 91\\ 3{\overline{\smash{)}273}}\\ -\ 27 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{3\ \ }\\ -\ \ \ 3\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

Possible Answers:

\(\displaystyle 3\times 79\)

\(\displaystyle 3\times 97\)

\(\displaystyle 3\times 89\)

\(\displaystyle 3\times 91\)

\(\displaystyle 3\times 93\)

Correct answer:

\(\displaystyle 3\times 91\)

Explanation:

The computation shows that \(\displaystyle 273\div3=91\) with a remainder of \(\displaystyle 0\).

\(\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 91}\\ {\color{Green} 3}{\overline{\smash{)}273}}\\ -\ 27 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 3\ \ }\\ -\ \ \ 3\ \ \end{array}}{ \ \ \ \space} }\)

                  \(\displaystyle 0\)

So it must be that:

\(\displaystyle 3\times91=273+0\)

Simplify.

\(\displaystyle 3\times91=273\)

The correct answer is \(\displaystyle 3\times 91\)

Learning Tools by Varsity Tutors