Common Core: 1st Grade Math : Common Core Math: Grade 1

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #771 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}40\\ -\ 20\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 20\)

\(\displaystyle 50\)

\(\displaystyle 10\)

Correct answer:

\(\displaystyle 20\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}40\\ -\ 20\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 4-2=2\)

\(\displaystyle \frac{\begin{array}[b]{r}40\\ -\ 20\end{array}}{ \ \ \ \space20}\)

Example Question #14 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 30\)

\(\displaystyle 0\)

\(\displaystyle 10\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 10\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 10\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 2-1=1\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 10\end{array}}{ \ \ \ \space10}\)

Example Question #772 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 50\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 30\)

\(\displaystyle 20\)

\(\displaystyle 40\)

\(\displaystyle 50\)

Correct answer:

\(\displaystyle 30\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 50\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 8-5=3\)

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 50\end{array}}{ \ \ \ \space30}\)

Example Question #771 : Operations

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 30\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 50\)

\(\displaystyle 60\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 60\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 30\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 9-3=6\)

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 30\end{array}}{ \ \ \ \space60}\)

Example Question #21 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\(\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 50\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 60\)

\(\displaystyle 20\)

\(\displaystyle 30\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 20\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 50\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 7-5=2\)

\(\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 50\end{array}}{ \ \ \ \space20}\)

Example Question #772 : Operations

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 40\)

\(\displaystyle 10\)

\(\displaystyle 30\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 50\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 10\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 6-1=\)\(\displaystyle 5\)

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 10\end{array}}{ \ \ \ \space50}\)

Example Question #773 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 20\)

\(\displaystyle 40\)

\(\displaystyle 10\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 0\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 10\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 1-1=\) \(\displaystyle 0\)

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 10\end{array}}{ \ \ \ \ \ \space0}\)

Example Question #1011 : Ssat Elementary Level Quantitative (Math)

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 70\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 40\)

\(\displaystyle 60\)

\(\displaystyle 20\)

\(\displaystyle 50\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 20\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 70\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 9-7=2\)

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 70\end{array}}{ \ \ \ \space20}\)

Example Question #24 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 80\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 50\)

\(\displaystyle 10\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 10\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 80\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 9-8=1\)

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 80\end{array}}{ \ \ \ \space10}\)

Example Question #21 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 90\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 30\)

\(\displaystyle 0\)

\(\displaystyle 20\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 0\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 90\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 9-9=0\)

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 90\end{array}}{ \ \ \ \ \ \space0}\)

Learning Tools by Varsity Tutors