College Chemistry : Titrations

Study concepts, example questions & explanations for College Chemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Titrations

The titration of a \displaystyle 15.0\text{mL} sample of an \displaystyle \text{HCl} solution at an unknown concentration requires \displaystyle 17.08\text{mL} of a \displaystyle 0.200\text{M NaOH} solution. What is the concentration of the unknown hydrochloric acid solution in \displaystyle M?

Possible Answers:

\displaystyle 0.237

\displaystyle 0.245

\displaystyle 0.189

\displaystyle 0.228

Correct answer:

\displaystyle 0.228

Explanation:

Start by writing the chemical equation for this acid-base reaction.

\displaystyle \text{HCl}(aq)+\text{NaOH}(aq)\rightarrow\text{H}_2\text{O}(l)+\text{NaCl}(aq)

Next, find the number of moles of \displaystyle \text{NaOH} that was added.

\displaystyle 17.08\text{mL NaOH}\cdot\frac{1\text{L}}{1000\text{mL}}\cdot\frac{0.200\text{ moles NaOH}}{\text{L}}=0.003416\text{ moles of NaOH}

At the equivalence point of a titration, the moles of acid and the moles of base are the same.

\displaystyle \text{Moles of HCl}=\text{Moles of NaOH}=0.003416

Finally, find the molarity of the solution.

\displaystyle \text{Molarity}=\frac{\text{moles of solute}}{\text{liters of solution}}=\frac{0.003416}{15.0\times10^{-3}}=0.228M

Make sure to round the answer to three significant figures.

Example Question #1 : Titrations

\displaystyle 75.0\text{mL} sample of \displaystyle 0.100M sodium hydroxide is titrated with \displaystyle 0.150M hydrochloric acid. Find the pH of the solution after adding \displaystyle 45.0\text{mL} of hydrochloric acid.

Possible Answers:

\displaystyle 12.2

\displaystyle 11.2

\displaystyle 11.8

\displaystyle 10.4

Correct answer:

\displaystyle 11.8

Explanation:

Start by finding the initial number of moles of sodium hydroxide by using the given volume and molarity. Since sodium hydroxide is a strong base, it will dissociate completely into \displaystyle \text{OH}^-.

\displaystyle \text{Initial moles of NaOH}=\text{Initial moles of OH}^-=0.075\text{L}(\frac{0.100\text{ mol}}{\text{L}})=0.0075\text{ moles}

Next, find the number of moles of the hydrochloric acid added by using the given volume and molarity. Since hydrochloric acid is a strong acid, all of the \displaystyle \text{H}_3\text{O}^+ will come from the acid.

\displaystyle \text{Moles of HCl added}=\text{Moles of H}_3\text{O}^+=0.045\text{L}(\frac{0.150\text{ moles}}{\text{L}})=0.00675\text{ moles}

Now, as the acid is added, it will neutralize some of the base as shown by the following equation:

\displaystyle \text{OH}^-(aq)+\text{H}_3\text{O}^+(aq)\rightarrow 2\text{H}_2\text{O}(l)

Since the reactants are found in a \displaystyle 1:1 ratio, subtract the number of moles of acid added from the number of initial moles of base to get the amount of remaining base.

\displaystyle \text{Remaining moles of NaOH}=0.0075-0.00675=7.5\times10^{-4}\text{ moles of NaOH}

Now, divide this number of moles by the total volume of the solution to find the concentration of the base.

\displaystyle [\text{OH}]^-=\frac{7.5\times 10^{-4}\text{ moles}}{0.075\text{L}+0.045\text{L}}=0.00625\text{ M}

Next, find the \displaystyle \text{pOH} value.

\displaystyle \text{pOH}=-\log(0.00625)=2.204

Finally, find the \displaystyle \text{pH} value.

\displaystyle \text{pH}=14-\text{pOH}

\displaystyle \text{pH}=14-2.204=11.80

Your answer should have \displaystyle 3 significant figures.

\displaystyle \text{pH}=11.8

Example Question #3 : Acid Base Reactions

Screen shot 2016 03 24 at 9.10.57 pm

Determine the volume in mL of \displaystyle HCl solution it would take to neutralize \displaystyle 35.0\ mL of a \displaystyle 0.0025\ M \displaystyle NaOH with a \displaystyle 0.012\ M \displaystyle HCl solution during a titration.

Possible Answers:

\displaystyle 24.0\ mL

\displaystyle 23.0\ mL

\displaystyle 131.0\ mL

\displaystyle 72.0\ mL

Correct answer:

\displaystyle 72.0\ mL

Explanation:

Determine the moles of \displaystyle NaOH used:

\displaystyle 0.035\ L\times \frac{0.025\ moles}{L}=8.75\times10^{-4}\ moles\ NaOH

At the equivalence point of the titration:

\displaystyle moles\ of\ NaOH=moles\ of\ HCl=8.75\times10^{-4}\ moles

Convert the moles of \displaystyle HCl to liters:

\displaystyle \frac{L}{0.012\ moles}\times8.75\times10^{-4}\ moles=0.072\ L\ of HCl

Convert the liters to milliliters:

\displaystyle \frac{1\ mL}{10^{-3}L}\times0.072\ L=72.0\ mL\ HCl

Example Question #1 : Titrations

Screen shot 2016 03 24 at 9.10.57 pm

Determine the volume in mL of \displaystyle HCl solution it would take to neutralize \displaystyle 42.0\ mL of a \displaystyle 0.0021\ M \displaystyle NaOH with a \displaystyle 0.014\ M \displaystyle HCl solution during a titration.

Possible Answers:

\displaystyle 4.2\ mL

\displaystyle 6.3\ mL

\displaystyle 1.2\ mL

\displaystyle 40.5\ mL

Correct answer:

\displaystyle 6.3\ mL

Explanation:

Determine the moles of \displaystyle NaOH used:

\displaystyle 0.042\ L\times \frac{0.0021\ moles}{L}=8.82\times10^{-5}\ moles\ NaOH

At the equivalence point of the titration:

\displaystyle moles\ of\ NaOH=moles\ of\ HCl=8.82\times10^{-5}\ moles

Convert the moles of \displaystyle HCl to liters:

\displaystyle \frac{L}{0.014\ moles}\times8.82\times10^{-5}\ moles=0.0063\ L\ of HCl

Convert the liters to milliliters:

\displaystyle \frac{1\ mL}{10^{-3}L}\times0.0063\ L=6.3\ mL\ HCl

Example Question #2 : Titrations

Screen shot 2016 03 24 at 8.37.08 pm

\displaystyle NaOH reacts with \displaystyle CH_{3}COOH in aqueous solution according to the chemical equation provided. If it took \displaystyle 32.0\ mL of a \displaystyle 0.1\ M \displaystyle NaOH solution to titrate \displaystyle 25.0\ mL of an \displaystyle CH_{3}COOH solution, what was the concentration of original \displaystyle CH_{3}COOH solution?

Possible Answers:

\displaystyle 0.0032\ M

\displaystyle 0.25\ M

\displaystyle 0.13\ M

\displaystyle 1.4\ M

Correct answer:

\displaystyle 0.13\ M

Explanation:

Using the concentration of \displaystyle NaOH as a conversion factor, we can convert the volume of \displaystyle NaOH to moles by dimensional analysis:

\displaystyle \frac{0.1\ moles}{L}\times0.032\ L=0.0032\ moles\ NaOH

At the equivalence point of the titration:

\displaystyle moles\ of\ NaOH=moles\ of\ CH_{3}COOH=0.0032\ moles

\displaystyle Molarity=\frac{0.0032\ moles}{0.025\ L}=0.13\ M

Example Question #3 : Titrations

Screen shot 2016 03 24 at 8.37.08 pm

Household vinegar contains the organic compound acetic acid with chemical formula, \displaystyle CH_{3}COOH. Acetic acid reacts with \displaystyle NaOH in aqueous solution according to the chemical equation provided. Determine the percentage (by volume) of vinegar in a \displaystyle 40.0\ mL sample that reacted with \displaystyle 15.0\ mL of \displaystyle 0.1\ M \displaystyle NaOH during a titration to reach the equivalence. (Density of \displaystyle CH_{3}COOH=\displaystyle 1.05\frac{g}{mL})

Possible Answers:

\displaystyle 45\%

\displaystyle 10\%

\displaystyle 0.21\%

\displaystyle 3.5\%

Correct answer:

\displaystyle 0.21\%

Explanation:

\displaystyle \frac{0.1\ moles}{L}\times0.015L=0.0015\ moles

At the equivalence point of the titration:

\displaystyle moles\ of\ NaOH=moles\ of\ CH_{3}COOH=0.0015\ moles

Convert the moles of \displaystyle CH_3COOH to grams:

\displaystyle 0.0015\ moles\ CH_{3}COOH\times \frac{60.05\ g}{moles}=0.090\ g\ CH_{3}COOH

Using the density of \displaystyle CH_3COOH given, convert the grams to mL:

\displaystyle 0.09\ g \times \frac{mL}{1.05g}=0.086\ mL\ CH_{3}COOH

Determine the percentage of \displaystyle CH_3COOH by dividing the volume of \displaystyle CH_3COOH by the total volume of vinegar:

\displaystyle \frac{0.086\ mL}{40.0\ mL}=0.21\%\ CH_{3}COOH\ in\ vinegar

Example Question #4 : Titrations

Screen shot 2016 03 24 at 8.37.08 pm

\displaystyle NaOH reacts with \displaystyle CH_{3}COOH in aqueous solution according to the chemical equation provided. If it took \displaystyle 26.7\ mL of a \displaystyle 0.1\ M \displaystyle NaOH solution to titrate \displaystyle 20.8\ mL of an \displaystyle CH_{3}COOH solution, what was the concentration of original \displaystyle CH_{3}COOH solution?

Possible Answers:

\displaystyle 0.005\ M

\displaystyle 0.154\ M

\displaystyle 1.4\ M

\displaystyle 0.309\ M

Correct answer:

\displaystyle 0.154\ M

Explanation:

Using the concentration of \displaystyle NaOH as a conversion factor, we can convert the volume of \displaystyle NaOH to moles by dimensional analysis:

\displaystyle \frac{0.1\ moles}{L}\times0.0267\ L=0.00267\ moles\ NaOH

At the equivalence point of the titration:

\displaystyle moles\ of\ NaOH=moles\ of\ CH_{3}COOH=0.00267\ moles

\displaystyle Molarity=\frac{0.0032\ moles}{0.0208\ L}=0.154\ M

Example Question #2 : Titrations

Screen shot 2016 03 24 at 8.37.08 pm

Household vinegar contains the organic compound acetic acid with chemical formula, \displaystyle CH_{3}COOH. Acetic acid reacts with \displaystyle NaOH in aqueous solution according to the chemical equation provided. Determine the percentage (by volume) of acetic acid in a \displaystyle 100.0\ mL sample of vinegar that reacted with \displaystyle 30.0\ mL of \displaystyle 2.0\ M \displaystyle NaOH during a titration to reach the equivalence. (Density of \displaystyle CH_{3}COOH=\displaystyle 1.05\frac{g}{mL})

Possible Answers:

\displaystyle 1.5\%

\displaystyle 7.0\%

\displaystyle 24\%

\displaystyle 3.4\%

Correct answer:

\displaystyle 3.4\%

Explanation:

Convert the liters of \displaystyle NaOH to moles:

\displaystyle \frac{2.00\ moles}{L}\times0.030L=0.06\ moles\ NaOH

At the equivalence point of the titration:

\displaystyle moles\ of\ NaOH=moles\ of\ CH_{3}COOH=0.06\ moles

Convert the moles of \displaystyle CH_3COOH to grams:

\displaystyle 0.06\ moles\ CH_{3}COOH\times \frac{60.05\ g}{moles}=3.6\ g\ CH_{3}COOH

Using the density of \displaystyle CH_3COOH given, convert the grams to mL:

\displaystyle 3.6\ g \times \frac{mL}{1.05g}=3.4\ mL\ CH_{3}COOH

Determine the percentage of \displaystyle CH_3COOH by dividing the volume of \displaystyle CH_3COOH by the total volume of vinegar:

\displaystyle \frac{3.4\ mL}{100.0\ mL}=3.4\%\ CH_{3}COOH\ in\ vinegar

Learning Tools by Varsity Tutors