All Calculus AB Resources
Example Questions
Example Question #51 : Analytical Applications Of Derivatives
A lifeguard on a beach needs to get to a swimmer in the water that is 200ft down the shoreline and 100ft out from the shore. The lifeguard can run 10ft/sec on the beach and can swim 4ft/sec in the water. To get to the swimmer in the least amount of time, how far should the lifeguard run down the beach before swimming out to the swimmer in the water? Approximate your answer to the nearest hundredth.
43.64 ft
99.99 ft
156.36 ft
200 ft
156.36 ft
This question is an optimization problem. This question asks to find the distance to run along the beach that minimizes the time it takes to get to the swimmer in the water. To minimize time, we need to construct an equation, where time is a function of one variable. Fortunately, the equation
can be solved for time, and this is how we will create the equation we need.
Solving this equation for time gives
We have two Rates. Running on the beach, and Swimming in the water. So we have two times to consider:
and
Adding these two times gives the total time to get to the person in the water.
We are given the rates that the lifeguard can run and swim, 10ft/sec, and 4ft/sec respectively. The variable is how far to swim down the beach.
Labeling the distance the lifeguard runs as will make the math somewhat difficult, whereas labeling the distance the lifeguard runs as will make the math a little nicer. We just need to remember that we did this. The picture below shows the labeling used in this explanation.
With this labeling, the distance the life guard runs is , and the distance the life guard swims is by Pythagorean Theorem.
Plugging the distances and rates into our Time equation gives:
This expresses Time as a function of one variable, . This is what we need to minimize. To do this we will find the relative minimum of this function. So we find the first derivative. First, we will do a little algebra and split the into two fractions and rewrite the square root as an exponent to make the derivative easier to compute.
Now we find the derivative. The derivative of is .
The derivative of is .
We use the chain rule for . Doing so gives
Assembling the pieces results in the following derivative
To find the critical points, we substitute 0 in for Time'.
To solve for , we move the to the opposite side and then cross multiply.
Now we can divide by 4 on both sides to isolate the square root, then reduce the resulting 10/4 to 5/2. Then we square both sides to eliminate the square root.
We know need to move the terms to the same side, the right side in this explanation Remember that we will need to get the common denominator to combine them.
Multiply both sides by to isolate . Then square root both sides. We will not need to incorporate the when we square root, since is a physical distance.
Since the question asks us to approximate the answer to the nearest hundredth, we can plug into a calculator to get a decimal. Doing so gives approximately x=43.64 ft.
However, this is not our final answer. Recall that we defined the distance the life guard ran as . So we need to subtract x=43.64 from 200 to find what the question is asking for.
Doing this we get our final answer to be .
Example Question #52 : Analytical Applications Of Derivatives
A rectangle (blue in the picture) has its bottom-left corner on the origin, and its top-right corner is on the graph of the quarter-ellipse (black in picture), . Find the dimensions of the rectangle that maximize the area of the rectangle.
width =
length =
width =
length =
width =
length =
width =
length =
width =
length =
Since the rectangle has one corner on the origin, (0,0), and the opposite corner at a point (x,y) on the graph, we can set the width = x, and the length = y.
The area of a rectangle is , so for this problem, .
Since we are trying to maximize the area, we need to express the area as a function of only one variable. Right now we have two variables. The way to fix this is to substitute one variable, like , with an equivalent function of .
Most problems give a relationship between the two variables. In this problem, the equation of the quarter-ellipse, , is the relationship we need.
We can substitute the in the Area equation with what is equals.
Now we have the equation of what we want to maximize, Area, written in terms of only one variable, x. Now we can find the relative maximum by finding the derivative.
Before finding the derivative, it will be helpful to rewrite the square root as an exponent.
We will need to use the product rule, , and use chain rule for . Doing this, we get:
Now we find the critical points of the derivative by setting it equal to zero and solving. We will simplify the derivative slightly at the same time. We can multiply the fractions in the second part, an move the down to the denominator to remove the negative from the exponent. This gives us:
Now we can solve for x. First, subtract the term to the left side.
Now multiply both sides by denominator, , in order to eliminate the fraction.
The is multiplied by the same group, so we add their exponents, 1/2 + 1/2, which is 1. So we don't need to write the new exponent, since 1 is understood.
Since the power on the group is 1, we can distribute the -6 through it.
Moving all the terms to the left, and the -6 to the right, we get:
Divide both sides by 2 to isolate
Now square root both sides.
Since the domain of the graph is given as , we can ignore the negative answer and use a positive answer.
Now we know the width is . To find the length, we need to find .
Plug into the graph's equation to find .
We need to get the square root out of the denominator. To do this we multiply the numerator and denominator by .
Thus, the length of the rectangle should be .
Now we know the dimensions of the rectangle, that maximize its area:
width=
length =
Example Question #431 : Calculus Ab
Which of the following is the correct graph of the derivative of ?
The derivative of is . So the graph of the derivative will have a positive slope of two and pass through the origin.
Example Question #2 : Graph Functions And Their First And Second Derivatives
Identify the local maximums and minimums in the following plot
maximums: , minimums:
maximums: , minimums:
maximums: , minimums:
maximums: , minimums:
maximums: , minimums:
The local maximums will be the points at which the slope is equal to zero and the slope is in the process of changing from positive to negative. The local minimums will be the points at which the slope is equal to zero and in the process of changing from negative to positive. Therefore the maximums are and the minimums are .
Example Question #3 : Graph Functions And Their First And Second Derivatives
The following plot is the plot of the derivative of . Which of the following is true from the graph of this derivative.
All of the above
The function is increasing on the intervals and and decreasing on .
The function is concave up on the interval and concave down on .
There is a local maximum at and a local minimum at .
All of the above
Points of inflection occur when the graph of the derivative cross the x-axis. If the derivative is going from positive to negative, this tells us the function has a local maximum at this point. If the derivative is going from negative to positive, then the function has a local minimum at that point. From this we see that there is a local maximum at and a local minimum at .
The function is increasing when its derivative is positive and decreasing when its derivative is negative. From this we see that the function is increasing on the intervals and and decreasing on .
The first derivative graph can also tell us about the concavity of our function. When the derivative is increasing, the function is concave up. When the derivative is decreasing, the function is concave down. From this we see that the function is concave up on the interval and concave down on .
Example Question #4 : Graph Functions And Their First And Second Derivatives
Which of the following is the graph of the derivative of ? State the local maximum(s).
Local max
Local max:
No local max:
No local max:
The derivative of the function is . There is no local maximum for this plot. Nowhere in the plot of the derivative is there a point where the derivative crosses the x-axis going from positive to negative.
Example Question #1 : Graph Functions And Their First And Second Derivatives
True or False: We have a function and it’s derivative. The derivative is concave up from and so the function must also be concave up on the same interval.
False
True
False
We may want to answer true because we associate concavity with increasing functions, but functions that are decreasing can also be concave up. The rule of thumb is, if the derivative of a function is increasing on an interval, then the function is concave up. Here, we are only given the information that the derivative is concave up, but no insight into whether or not it is increasing or decreasing. So this statement is false.
Example Question #6 : Graph Functions And Their First And Second Derivatives
The derivative of a function crosses the x-axis going from negative to positive at . The derivative crosses the x-axis once more at going from positive to negative. Which of the following is true about these critical points.
The function is concave down at and concave up at
is a minimum, is a maximum
The function is concave up at and concave down at
is a maximum, is a minimum
is a minimum, is a maximum
Remember that critical points of a derivative give us insight into maximum, minimums, and points of inflection. If the derivative crosses the x-axis going from positive to negative then this tells us that the function has a local maximum at this point. If the derivative crosses the x-axis going from negative to positive, then this tells us that the function has a local minimum at that point. Remember the derivative tells us about the rate of change. If the slope of our function changes from negative to positive, then there must be a small trench that is a minimum. If the slope of our function changes from positive to negative, then there must be a small hill that is a maximum.
Example Question #7 : Graph Functions And Their First And Second Derivatives
True or False: If our function is increasing then the derivative must be y-positive.
True
False
True
This is true. For all points of the derivative that are above the x-axis, this is telling us the slope of our function is positive and therefore increasing. For all points of the derivative below the x-axis, this is telling us the slope of our function is negative and therefore decreasing.
Example Question #8 : Graph Functions And Their First And Second Derivatives
Suppose the derivative of function crosses the x-axis at going from positive to negative, and again at going from negative to positive. Which of the following could be the graph of ?
From the description of the derivative we know that a local maximum is at . Since the derivative is crossing the x-axis going from positive to negative at this point, we assume that the slope of the function is going from positive to negative creating a local maximum. At we are give that the derivative crosses the x-axis going from negative to positive. This means that our function is going from decreasing to increasing creating a local minimum. The graph above meets these criteria.