Calculus 3 : Calculus 3

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #433 : Partial Derivatives

Given the function \(\displaystyle f(x,y)=x^2\sin e^y\), find the partial derivative \(\displaystyle f_x\).

Possible Answers:

\(\displaystyle f_x=2x\sin e^y\)

\(\displaystyle f_x=2y\sin e^x\)

\(\displaystyle f_x=2xe^y\sin e^y\)

\(\displaystyle f_x=2x\cos e^y\)

Correct answer:

\(\displaystyle f_x=2x\sin e^y\)

Explanation:

To find the partial derivative \(\displaystyle f_x\) of \(\displaystyle f(x,y)=x^2\sin e^y\), we take its derivative with respect to \(\displaystyle x\) while holding \(\displaystyle y\) constant.

So we get

\(\displaystyle \\f_x=\frac{\partial}{\partial x}f(x,y) \\f_x=\frac{\partial}{\partial x}x^2\sin e^y \\f_x=\sin e^y \cdot \frac{\partial}{\partial x}x^2 \\f_x=2x\sin e^y\)

Example Question #434 : Partial Derivatives

Given the function \(\displaystyle f(x,y)=x^2\sin e^y\), find the partial derivative \(\displaystyle f_y\).

Possible Answers:

\(\displaystyle f_y=2x \cos e^y\)

\(\displaystyle f_y=x^2e^y \cos e^y\)

\(\displaystyle f_y=x^2 \cos e^y\)

\(\displaystyle f_y=2xe^y \cos e^y\)

Correct answer:

\(\displaystyle f_y=x^2e^y \cos e^y\)

Explanation:

To find the partial derivative \(\displaystyle f_y\) of \(\displaystyle f(x,y)=x^2\sin e^y\), we take its derivative with respect to \(\displaystyle y\) while holding \(\displaystyle x\) constant.

So we get

\(\displaystyle \\f_y=\frac{\partial}{\partial y}f(x,y) \\ \\f_y=\frac{\partial}{\partial y}x^2\sin e^y \\ \\f_y=x^2 \cdot \frac{\partial}{\partial y}\sin e^y \\ \\ f_y=2x\cos e^y\cdot e^y \\ \\f_y=x^2e^y\cos e^y\)

Example Question #435 : Partial Derivatives

Given the function \(\displaystyle f(x,y,z)=z^3e^{5x+y^4}\), find the partial derivative \(\displaystyle f_x\).

Possible Answers:

\(\displaystyle f_x=5z^3e^{5x+y^4}\)

\(\displaystyle f_x=3x^2e^{5x+y^4}\)

\(\displaystyle f_x=15z^2e^{5x+y^4}\)

\(\displaystyle f_x=20y^3z^3e^{5x+y^4}\)

Correct answer:

\(\displaystyle f_x=5z^3e^{5x+y^4}\)

Explanation:

Given the function \(\displaystyle f(x,y,z)=z^3e^{5x+y^4}\), we can find the partial derivative \(\displaystyle f_x\) by taking its derivative with respect to \(\displaystyle x\) while holding \(\displaystyle y,z\) constant.

So we get

\(\displaystyle \\f_x=\frac{\partial}{\partial x}f(x,y,z) \\ \\f_x=\frac{\partial}{\partial x}z^3e^{5x+y^4} \\ \\f_x=z^3\frac{\partial}{\partial x}e^{5x+y^4} \\ \\f_x=z^3e^{5x+y^4}\frac{\partial}{\partial x}(5x+y^4)\)

\(\displaystyle =5z^3e^{5x+y^4}\)

Example Question #436 : Partial Derivatives

Given the function \(\displaystyle f(x,y,z)=z^3e^{5x+y^4}\), find the partial derivative \(\displaystyle f_y\).

Possible Answers:

\(\displaystyle f_y=20y^3z^3e^{5x+y^4}\)

\(\displaystyle f_y=4y^3z^3e^{5x+y^4}\)

\(\displaystyle f_y=z^3e^{5+4y^3}\)

\(\displaystyle f_y=3z^2e^{5x+y^4}\)

Correct answer:

\(\displaystyle f_y=4y^3z^3e^{5x+y^4}\)

Explanation:

Given the function \(\displaystyle f(x,y,z)=z^3e^{5x+y^4}\), we can find the partial derivative \(\displaystyle f_y\) by taking its derivative with respect to \(\displaystyle y\) while holding \(\displaystyle x,z\) constant.

So we get

\(\displaystyle \\f_y=\frac{\partial}{\partial y}f(x,y,z) \\ \\f_y=\frac{\partial}{\partial y}z^3e^{5x+y^4} \\ \\f_y=z^3\frac{\partial}{\partial y}e^{5x+y^4} \\ \\f_y=z^3e^{5x+y^4}\frac{\partial}{\partial y}(5x+y^4)\)

\(\displaystyle =4y^3z^3e^{5x+y^4}\)

Example Question #437 : Partial Derivatives

Given the function \(\displaystyle f(x,y,z)=z^3e^{5x+y^4}\), find the partial derivative \(\displaystyle f_z\).

Possible Answers:

\(\displaystyle f_z=z^3e^{5+4y^3}\)

\(\displaystyle f_z=z^3e^{5+y^4}\)

\(\displaystyle f_z=3z^2e^{5x+y^4}\)

\(\displaystyle f_z=3z^2e^{5+4y^3}\)

Correct answer:

\(\displaystyle f_z=3z^2e^{5x+y^4}\)

Explanation:

Given the function \(\displaystyle f(x,y,z)=z^3e^{5x+y^4}\), we can find the partial derivative \(\displaystyle f_z\) by taking its derivative with respect to \(\displaystyle z\) while holding \(\displaystyle x,y\) constant.

So we get

\(\displaystyle \\f_z=\frac{\partial}{\partial z}f(x,y,z) \\ \\f_z=\frac{\partial}{\partial z}z^3e^{5x+y^4} \\ \\f_z=e^{5x+y^4}\frac{\partial}{\partial y}z^3 \\ \\ f_z=3z^2e^{5x+y^4}\)

Example Question #2801 : Calculus 3

Find the partial derivative \(\displaystyle f_x\) of the function \(\displaystyle f(x,y,z)=y\ln(x^2+z^5)\).

Possible Answers:

\(\displaystyle f_x=\frac{2xy}{x^2+z^5}\)

\(\displaystyle f_x=\ln(x^2+z^5)\)

\(\displaystyle f_x=\frac{2x}{x^2+z^5}\)

\(\displaystyle f_x=\frac{5yz^4}{x^2+z^5}\)

Correct answer:

\(\displaystyle f_x=\frac{2xy}{x^2+z^5}\)

Explanation:

To find the partial derivative \(\displaystyle f_x\) of the function \(\displaystyle f(x,y,z)=y\ln(x^2+z^5)\), we take its derivative with respect to \(\displaystyle x\) while holding \(\displaystyle y,z\) constant.

We use the chain rule to get

\(\displaystyle \\f_x=\frac{\partial}{\partial x}f(x,y,z) \\ \\f_x=\frac{\partial}{\partial x}y\ln(x^2+z^5) \\ \\f_x=y\frac{\partial}{\partial x}\ln(x^2+z^5) \\ \\f_x=y\cdot \frac{\frac{\partial}{\partial x}(x^2+z^5)}{x^2+z^5}\)

\(\displaystyle =\frac{2xy}{x^2+z^5}\)

Example Question #439 : Partial Derivatives

Find the partial derivative \(\displaystyle f_y\) of the function \(\displaystyle f(x,y,z)=y\ln(x^2+z^5)\).

Possible Answers:

\(\displaystyle f_y=\frac{2xyz^5}{x^2+z^5}\)

\(\displaystyle f_y=\frac{2xy}{x^2+z^5}\)

\(\displaystyle f_y=\ln(x^2+z^5)\)

\(\displaystyle f_y=\frac{5yz^4}{x^2+z^5}\)

Correct answer:

\(\displaystyle f_y=\ln(x^2+z^5)\)

Explanation:

To find the partial derivative \(\displaystyle f_y\) of the function \(\displaystyle f(x,y,z)=y\ln(x^2+z^5)\), we take its derivative with respect to \(\displaystyle y\) while holding \(\displaystyle x,z\) constant.

We get

\(\displaystyle \\f_y=\frac{\partial}{\partial y}f(x,y,z) \\ \\f_y=\frac{\partial}{\partial y}y\ln(x^2+z^5) \\ \\f_y=\ln(x^2+z^5)\frac{\partial}{\partial y}y \\ \\f_y=\ln(x^2+z^5)\)

 

Example Question #440 : Partial Derivatives

Given the function \(\displaystyle f(x,y,z)=y\ln(x^2+z^5)\), find the partial derivative \(\displaystyle f_z\).

Possible Answers:

\(\displaystyle f_z=\frac{10xyz^4}{x^2+z^5}\)

\(\displaystyle f_z=\frac{2x}{x^2+z^5}\)

\(\displaystyle f_z=\frac{5yz^4}{x^2+z^5}\)

\(\displaystyle f_z=\ln(x^2+y^5)\)

Correct answer:

\(\displaystyle f_z=\frac{5yz^4}{x^2+z^5}\)

Explanation:

To find the partial derivative \(\displaystyle f_z\) of the function \(\displaystyle f(x,y,z)=y\ln(x^2+z^5)\), we take its derivative with respect to \(\displaystyle z\) while holding \(\displaystyle x,y\) constant.

We use the chain rule to get

\(\displaystyle \\f_z=\frac{\partial}{\partial z}f(x,y,z) \\ \\f_z=\frac{\partial}{\partial z}y\ln(x^2+z^5) \\ \\f_z=y\frac{\partial}{\partial z}\ln(x^2+z^5) \\ \\f_z=y\cdot \frac{\frac{\partial}{\partial z}(x^2+z^5)}{x^2+z^5}\)

\(\displaystyle =\frac{5yz^4}{x^2+z^5}\)

Example Question #441 : Partial Derivatives

Find the value of \(\displaystyle f_x\) for \(\displaystyle f(x,y)=x^y\) at \(\displaystyle (2,3)\)

Possible Answers:

\(\displaystyle 12\)

\(\displaystyle 36\)

\(\displaystyle 18\)

\(\displaystyle 24\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 12\)

Explanation:

Note that for this problem, we're told to take the derivative with respect to one particular variable. This is known as taking a partial derivative; often it is denoted with the Greek character delta, \(\displaystyle \delta\), or by the subscript of the variable being considered such as \(\displaystyle f_x\) or \(\displaystyle f_y\).

For a problem like this, where we presume all variables are independent of each other, we need only consider the variable that we're taking the derivative of the function with respect to; all other variables can be treated as constants.

Taking the partial derivative of \(\displaystyle f(x,y)=x^y\) at \(\displaystyle (2,3)\)

We find:

\(\displaystyle f_x= yx^{y-1}\rightarrow3(2^2)=12\)

Example Question #442 : Partial Derivatives

Find the value of \(\displaystyle f_x\) for \(\displaystyle f(x,y)=x^3(y+5)\) at \(\displaystyle (2,1)\)

Possible Answers:

\(\displaystyle 12\)

\(\displaystyle 72\)

\(\displaystyle 24\)

\(\displaystyle 144\)

\(\displaystyle 36\)

Correct answer:

\(\displaystyle 72\)

Explanation:

Note that for this problem, we're told to take the derivative with respect to one particular variable. This is known as taking a partial derivative; often it is denoted with the Greek character delta, \(\displaystyle \delta\), or by the subscript of the variable being considered such as \(\displaystyle f_x\) or \(\displaystyle f_y\).

For a problem like this, where we presume all variables are independent of each other, we need only consider the variable that we're taking the derivative of the function with respect to; all other variables can be treated as constants.

Taking the partial derivative of \(\displaystyle f(x,y)=x^3(y+5)\) at \(\displaystyle (2,1)\)

We find:

\(\displaystyle f_x= 3x^2(y+5)\rightarrow12(6)=72\)

 

Learning Tools by Varsity Tutors