Calculus 3 : Calculus 3

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #64 : Equations Of Lines And Planes

Find the equation of the plane from the points on the plane \(\displaystyle p_1=(2,-5,6)\)\(\displaystyle p_2=(3,-1,1)\) and \(\displaystyle p_3=(1,-4,1)\)

Note: Use the point \(\displaystyle p_1\) when forming the equation of the plane

Possible Answers:

\(\displaystyle -15x+10y+5z=-30\)

\(\displaystyle -15x+10y+5z=-50\)

\(\displaystyle -15x-10y+5z=-10\)

\(\displaystyle 15x+10y+5z=50\)

Correct answer:

\(\displaystyle -15x+10y+5z=-50\)

Explanation:

First, we need to form two vectors on the plane to get the normal vector to the plane. This is done from the following operation:

\(\displaystyle v_1=p_1-p_2=\left \langle (2-3),(-5+1),(6-1) \right \rangle=\left \langle -1,-4,5\right \rangle\)

\(\displaystyle v_2=p_1-p_3=\left \langle (2-1),(-5+4),(6-1) \right \rangle=\left \langle 1,-1,5\right \rangle\)

We then take the cross product of these vectors, which gets us the normal vector

\(\displaystyle n=\left \langle -15,10,5\right \rangle\)

Plugging the point \(\displaystyle p_1\) and the normal vector into the equation of the plane, we get

\(\displaystyle -15(x-2)+10(y+5)+5(z-6)=0\)

Simplifying, we get

\(\displaystyle -15x+10y+5z=-50\)

 

 

Example Question #61 : Equations Of Lines And Planes

Find the equation of the plane tangent to the surface \(\displaystyle z=f(x,y)\) at the point where \(\displaystyle x=\frac{\pi}{2}\) and \(\displaystyle y = 2\)

 

\(\displaystyle f(x,y)=\sin(2xy)\)

Possible Answers:

\(\displaystyle z=2x\cos(2xy)-2y\cos(2xy)+\frac{\pi-4}{2}\)

\(\displaystyle z=2y\cos(2xy)-2x\cos(2xy)+\frac{\pi}{2}\)

\(\displaystyle z=4x+4y-8-2\pi\)

\(\displaystyle z=x-4\pi y-8\pi\)

\(\displaystyle z=4x-4y-8\)

Correct answer:

\(\displaystyle z=4x+4y-8-2\pi\)

Explanation:

Find the equation of the plane tangent to the surface \(\displaystyle z=f(x,y)\) at the point where \(\displaystyle x=x_o=\frac{\pi}{2}\) and \(\displaystyle y = y_o=2\)

 

\(\displaystyle f(x,y)=\sin(2xy)\)                                                                                 (1) 

The equation of the plane tangent to the surface defined by \(\displaystyle f(x,y)\) is given by the formula: 

\(\displaystyle z=f(x_o,y_o)+f_x(x_o,y_o)(x-x_o)+f_y(x_o,y_o)(y-y_o)\)              (2)

 

In Equation (2) \(\displaystyle f_x\) and \(\displaystyle f_y\) are the partial derivatives of \(\displaystyle f\) with respect to \(\displaystyle x\) and \(\displaystyle y\), respectively. For this particular problem we have \(\displaystyle (x_o,y_o) =\left(\frac{\pi}{2},2\right)\) 

 

Let's fill in Equation (2) term-by-term: 

 \(\displaystyle f(x_o,y_o)=f\left(\frac{\pi}{2},2\right)=\sin(2\pi)=0\)

Compute the partial derivative and then evaluate both at \(\displaystyle \left(\frac{\pi}{2}, 2 \right )\) 

- Partial with respect to x 

\(\displaystyle f_x(x,y)=\frac{\partial f}{\partial x}=2y\cos(2xy)\)

\(\displaystyle f_x\left(\frac{\pi}{2}, 2 \right )=2(2)\cos(2\pi)=4\)

  

- Partial with respect to \(\displaystyle y\)

\(\displaystyle f_y(x,y)=2x\cos(2xy)\)

\(\displaystyle f_y\left(\frac{\pi}{2},2 \right )=2(2)\cos(2\pi) = 4\) 

 

Now fill in Equation (2) and simplify to get the equation of the tangent plane: 

\(\displaystyle z=4+4\left(x-\frac{\pi}{2}\right)+4(y-2)\)

\(\displaystyle =4x-2\pi+4y-8\)

\(\displaystyle =4x+4y-8-2\pi\)

 

Therefore the equation of the tangent plane to the surface \(\displaystyle z=\cos(2xy)\) at the point \(\displaystyle \left(\frac{\pi}{2},2 \right )\) is simply 

 

 \(\displaystyle z=4x+4y-8-2\pi\)

 

 

Example Question #62 : 3 Dimensional Space

Find the equation of the plane that contains the point \(\displaystyle (-5,-4,3)\) and the normal vector \(\displaystyle n=\left \langle 2,1,-3\right \rangle\)

Possible Answers:

 \(\displaystyle 2x+y-3z=-23\)

\(\displaystyle y+z=2\)

\(\displaystyle x-2y+3z=19\)

\(\displaystyle x+2y-3z=20\)

Correct answer:

 \(\displaystyle 2x+y-3z=-23\)

Explanation:

To find the equation of the plane, we use the formula \(\displaystyle A(x-x_0)+B(y-y_0)+C(z-z_0)=0\), where the point given is \(\displaystyle (x_0,y_0,z_0)\) and the normal vector \(\displaystyle n=\left \langle A,B,C\right \rangle\). Plugging in what we were given in the problem statement, we get \(\displaystyle 2(x+5)+1(y+4)-3(z-3)=0\). Manipulating the equation through algebra to isolate the variables, we get  \(\displaystyle 2x+y-3z=-23\).

Example Question #1 : Parametric Curves

Find the length of the parametric curve described by

\(\displaystyle x = 2\sin t\)

\(\displaystyle y = 2\cos t\)

from \(\displaystyle t=0\) to \(\displaystyle \pi\).

 

Possible Answers:

\(\displaystyle \pi\)

\(\displaystyle 4\pi\)

\(\displaystyle 2\pi\)

None of the other answers

\(\displaystyle \frac{3\pi}{4}\)

Correct answer:

\(\displaystyle 2\pi\)

Explanation:

There are several ways to solve this problem, but the most effective would be to notice that we can derive the following-

\(\displaystyle x^2 = 4\sin^2t\)

\(\displaystyle y^2 = 4\cos^2t\)

Hence

\(\displaystyle x^2+y^2 = 4\sin^2t + 4\cos^2t = 4\)

Therefore our curve is a circle of radius \(\displaystyle \sqrt4=2\), and it's circumfrence is \(\displaystyle 4\pi\). But we are only interested in half that circumfrence (\(\displaystyle t\) is from \(\displaystyle 0\) to \(\displaystyle \pi\), not \(\displaystyle 2\pi\).), so our answer is \(\displaystyle 2\pi\).

 

Alternatively, we could've found the length using the formula

\(\displaystyle l = \int_{t_0}^{t_1}\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt\).

Example Question #1 : Parametric Curves

Find the coordinates of the curve function

\(\displaystyle c(t)=< t^2,t,-3t>\)
when \(\displaystyle t=5\).

Possible Answers:

\(\displaystyle c(5)=< 25,5,-15>\)

\(\displaystyle c(5)=< 30,10,-5>\)

\(\displaystyle c(5)=< 2,4,6>\)

\(\displaystyle c(5)=< 15,10,-10>\)

Correct answer:

\(\displaystyle c(5)=< 25,5,-15>\)

Explanation:

To find the coordinates, we set \(\displaystyle t=5\) into the curve function.

We get

\(\displaystyle c(5)=< 5^2,5,-3(5)>\)

and thus

\(\displaystyle c(5)=< 25,5,-15>\)

Example Question #1 : Parametric Curves

Find the coordinates of the curve function

\(\displaystyle c(t)=< 5,t^2,t>\)

when \(\displaystyle t=3\)

Possible Answers:

\(\displaystyle < -5,6,3>\)

\(\displaystyle < 0,0,3>\)

\(\displaystyle < 0,3,0>\)

\(\displaystyle < 5,9,3>\)

Correct answer:

\(\displaystyle < 5,9,3>\)

Explanation:

To find the coordinates, we evaluate the curve function for \(\displaystyle t=3\)

As such,

\(\displaystyle c(3)=< 5, 3^2, 3)>=< 5,9,3>\)

Example Question #2 : Parametric Curves

Find the coordinates of the curve function 

\(\displaystyle c(t)=< cos (t), sin (t), cos (t)>\)

 when \(\displaystyle t=\frac{\pi}{2}\)

Possible Answers:

\(\displaystyle < 1,0,1>\)

\(\displaystyle < 1,1,1>\)

\(\displaystyle < 0,1,0>\)

\(\displaystyle < \frac{1}{2},-\frac{1}{2},\frac{1}{2}>\)

Correct answer:

\(\displaystyle < 0,1,0>\)

Explanation:

To find the coordinates, we evaluate the curve function for \(\displaystyle t=\pi/2\)

As such,

\(\displaystyle c(\frac{\pi}{2})=< cos (\frac{\pi}{2}), sin (\frac{\pi}{2}), cos (\frac{\pi}{2})>=< 0,1,0>\)

Example Question #1 : Parametric Curves

Find the equation of the line passing through the two points, given in parametric form:

\(\displaystyle (1, 2, 3), (0, -4, 1)\)

Possible Answers:

\(\displaystyle \left \langle 1+t, 2-6t, 3+2t\right \rangle\)

\(\displaystyle \left \langle 1-t, 2+6t, 3+2t\right \rangle\)

\(\displaystyle \left \langle 1+t, 2+6t, 3+2t\right \rangle\)

\(\displaystyle \left \langle 1+t, 2+t, 3+t\right \rangle\)

Correct answer:

\(\displaystyle \left \langle 1+t, 2+6t, 3+2t\right \rangle\)

Explanation:

To find the equation of the line passing through these two points, we must first find the vector between them:

\(\displaystyle \vec{v}=\left \langle 1, 6, 2\right \rangle\)

This was done by finding the difference between the x, y, and z components for the vectors. (This can be done in either order, it doesn't matter.)

Now, pick a point to be used in the equation of the line, as the initial point. We write the equation of line as follows:

\(\displaystyle \vec{r}=\left \langle 1, 2, 3\right \rangle + t\left \langle 1, 6, 2\right \rangle=\left \langle 1+t, 2+6t, 3+2t\right \rangle\)

The choice of initial point is arbitrary. 

Example Question #3 : Parametric Curves

Find the coordinate of the parametric curve when 

\(\displaystyle t=\pi/2\)

 

\(\displaystyle x=sin\,t\)\(\displaystyle y=t^2\)

Possible Answers:

\(\displaystyle (1/2, \pi/6)\)

\(\displaystyle (1,\pi^2/4)\)

\(\displaystyle (0,\pi/2)\)

Correct answer:

\(\displaystyle (1,\pi^2/4)\)

Explanation:

To find the coordinates of the parametric curve we plug in for

\(\displaystyle t=\pi/2\).

\(\displaystyle x=sin\,(\pi/2)= 1\)

\(\displaystyle y=(\pi/2)^2=\pi^2/4\)

As such the coordinates are

\(\displaystyle (1,\pi^2/4)\)

Example Question #2 : How To Find Velocity

The position of a particle is given by \(\displaystyle s(t)=\frac{2t^2+1}{t+1}\).  Find the velocity at \(\displaystyle t=2\).

Possible Answers:

\(\displaystyle \frac{16}{3}\)

\(\displaystyle \frac{15}{3}\)

\(\displaystyle \frac{15}{9}\)

\(\displaystyle 3\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle \frac{15}{9}\)

Explanation:

The velocity is given as the derivative of the position function, or

 \(\displaystyle v(t)=\frac{d(s(t))}{dt}\) .

We can use the quotient rule to find the derivative of the position function and then evaluate that at \(\displaystyle t=2\).  The quotient rule states that

 \(\displaystyle \left[\frac{f(x)}{g(x)}\right]'=\frac{g(x)f'(x)-f(x)g'(x)}{[g(x)]^2}\).  

In this case, \(\displaystyle f(t)=2t^2+1\Rightarrow f'(t)=4t\) and \(\displaystyle g(t)=t+1\Rightarrow g'(t)=1\).  

We can now substitute these values in to get

 \(\displaystyle \left[\frac{f(t)}{g(t)}\right]'=\frac{(t+1)*(4t)-(2t^2+1)*(1)}{(t+1)^2}=\frac{2t^2+4t-1}{(t+1)^2}\).  

Evalusting this at \(\displaystyle t=2\) gives us \(\displaystyle \frac{2*2^2+4*2-1}{(2+1)^2}=\frac{16-1}{3^2}=\frac{15}{9}\).  

So the answer is \(\displaystyle \frac{15}{9}\).

Learning Tools by Varsity Tutors