Calculus 2 : Taylor and Maclaurin Series

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Maclaurin Series

Write out the first two terms of the Maclaurin series of the following function:

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series of a function is simply the Taylor series of a function, but about x=0 (so a=0 in the formula):

To write out the first two terms (n=0 and n=1), we must find the first derivative of the function (because the zeroth derivative is the function itself):

The derivative was found using the following rule:

Next, use the general form, plugging in n=0 for the first term and n=1 for the second term:

 

Example Question #3091 : Calculus Ii

Find the Maclaurin series for the function:  

Possible Answers:

Correct answer:

Explanation:

Write Maclaurin series generated by a function f.  The Maclaurin series is centered at  for the Taylor series.

Evaluate the function and the derivatives of  at .

Substitute the values into the power series.  The series pattern can be seen as alternating and increasing order.

Example Question #10 : Maclaurin Series

Find the first three terms of the Maclaurin series for the following function:

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series of a function is simply the Taylor series for the function about a=0:

First, we can find the zeroth, first, and second derivatives of the function (n=0, 1, and 2 are the first three terms). 

Plugging these values into the formula we get the following.

Example Question #301 : Series In Calculus

Write out the first three terms of the Maclaurin series of the following function:

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series of a function is simply the Taylor series of a function about a=0:

Because we were asked to find the first three terms (n=0 to n=2), we must find the zeroth, first, and second derivatives of the function. The zeroth derivative is just the function itself.

Now plug in  into the formula and write out the first three terms (n=0, 1, 2):

Example Question #11 : Maclaurin Series

Write out the first three terms for the Maclaurin series of the following function:

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series for any function is simply the Taylor series of the function about a=0:

We first must find the zeroth, first, and second derivative of the function (for n=0, 1, and 2). The zeroth derivative is the function itself:

The derivatives were found using the following rules:

Now, we just use the formula, with , to write out the first three terms of the series (n=0, 1, and 2):

Example Question #312 : Series In Calculus

Write the first two terms Maclaurin series of the following function:

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series for a function is simply the Taylor series for the function about a=0:

We must find the first two terms of the series, corresponding to n=0 and n=1. We need the zeroth and first derivative of the function, the zeroth derivative being the the function itself:

The derivative was found using the following rules:

Now, use the formula above to write out the first two terms:

Example Question #311 : Series In Calculus

Write out the first five terms of the Maclaurin series for the following function:

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series for any function is simply the Taylor series for the function about a=0:

First, we must find the zeroth through fourth derivative of the function. The zeroth derivative is simply the function itself.

The following rules were used for the derivatives:

Next, we simply evaluate all of the derivatives at  and then write out all of the terms:

which simplified is equal to

 

 

Example Question #314 : Series In Calculus

Write out the first four terms of the Maclaurin series for the following function:

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series is the Taylor series for a function about a=0:

We need to find the zeroth, first, second, and third derivative of the function (n=0, 1, 2, and 3). The zeroth derivative is simply the function itself.

The derivatives were found using the following rule:

Now, use the above formula, with  to write out the first four terms:

which simplified becomes

Example Question #315 : Series In Calculus

Write the first two terms of the Maclaurin series for the following function:

 

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series for any function is simply the Taylor series for the function about a=0:

For the first two terms (n=0, 1) we must find the zeroth and first derivative of the function. The zeroth derivative is just the function itself.

Now, using the above formula, write out the first two terms:

Example Question #52 : Taylor Series

Find the Maclaurin Series of the function

up to the fifth degree.

Possible Answers:

Correct answer:

Explanation:

The formula for an i-th degree Maclaurin Polynomial is

For the fifth degree polynomial, we must evaluate the function up to its fifth derivative.

     

The summation becomes

And substituting for the values of the function and the first five derivative values, we get the Maclaurin Polynomial

Learning Tools by Varsity Tutors