Calculus 2 : Parametric, Polar, and Vector

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #52 : Vector Form

What is the vector form of \displaystyle 3i-5j+7k?

Possible Answers:

\displaystyle \left \langle 3,-5,7\right \rangle

\displaystyle \left \langle -3,-5,-7\right \rangle

\displaystyle \left \langle -3,-5,7\right \rangle

\displaystyle \left \langle 3,5,-7\right \rangle

\displaystyle \left \langle -3,5,7\right \rangle

Correct answer:

\displaystyle \left \langle 3,-5,7\right \rangle

Explanation:

In order to derive the vector form, we must map the , , -coordinates to their corresponding , , and coefficients.

That is, given , the vector form is \displaystyle a=\left \langle a_{1},a_{2},a_{3}\right \rangle.

So for \displaystyle 3i-5j+7k, we can derive the vector form \displaystyle \left \langle 3,-5,7\right \rangle.

Example Question #432 : Gre Subject Test: Math

What is the vector form of \displaystyle 7i?

Possible Answers:

\displaystyle \left \langle 0,0,7\right \rangle

\displaystyle \left \langle -7,0,0\right \rangle

\displaystyle \left \langle 0,0,-7\right \rangle

\displaystyle \left \langle 7,0,0\right \rangle

\displaystyle \left \langle 0,7,0,\right \rangle

Correct answer:

\displaystyle \left \langle 7,0,0\right \rangle

Explanation:

In order to derive the vector form, we must map the -coordinates to their corresponding , and coefficients.

That is, given , the vector form is .

So for \displaystyle 7i, we can derive the vector form \displaystyle \left \langle 7,0,0\right \rangle.

Example Question #401 : Parametric, Polar, And Vector

Given points and , what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle -4,2,8\right \rangle

\displaystyle \left \langle 4,-2,8\right \rangle

\displaystyle \left \langle -4,-2,-8\right \rangle

\displaystyle \left \langle 4,2,8\right \rangle

\displaystyle \left \langle -4,-2,8\right \rangle

Correct answer:

\displaystyle \left \langle -4,-2,8\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , and  elements of the points.

That is, for any point 

 and \displaystyle b=\left \langle b_1,b_2,b_3\right \rangle,

the distance is the vector 

\displaystyle v=\left \langle b_1-a_1,b_2-a_2,b_3-a_3\right \rangle

Subbing in our original points  and ,  we get:

\displaystyle v=\left \langle 5-9,2-4,7-(-1)\right \rangle

\displaystyle v=\left \langle -4,-2,8\right \rangle

Example Question #61 : Vectors

What is the vector form of \displaystyle -6j?

Possible Answers:

\displaystyle \left \langle 0,-6,0 \right \rangle

\displaystyle \left \langle 0,0,-6 \right \rangle

\displaystyle \left \langle 6, 0,0 \right \rangle

\displaystyle \left \langle 0,6,0 \right \rangle

\displaystyle \left \langle -6, 0,0 \right \rangle

Correct answer:

\displaystyle \left \langle 0,-6,0 \right \rangle

Explanation:

In order to derive the vector form, we must map the , , -coordinates to their corresponding , , and coefficients.

That is, given, the vector form is  .

So for \displaystyle -6j, we can derive the vector form \displaystyle \left \langle 0,-6,0 \right \rangle.

Example Question #82 : Linear Algebra

Given points \displaystyle (0,1,3) and \displaystyle (5,7,4), what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle 5,-6,1\right \rangle

\displaystyle \left \langle 5,6,1\right \rangle

\displaystyle \left \langle -5,-6,-1\right \rangle

\displaystyle \left \langle -5,6,1\right \rangle

\displaystyle \left \langle -5,-6,1\right \rangle

Correct answer:

\displaystyle \left \langle 5,6,1\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , , and elements of the points.

That is, for any point

and ,

the distance is the vector

.

Subbing in our original points \displaystyle (0,1,3) and \displaystyle (5,7,4), we get:

\displaystyle v=\left \langle 5-0,7-1,4-3\right \rangle

\displaystyle v=\left \langle 5,6,1\right \rangle

 

 

Example Question #33 : Parametric, Polar, And Vector Functions

Given points \displaystyle (2,4,5) and \displaystyle (9,1,0), what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle 7,3,-5\right \rangle

\displaystyle \left \langle -7,-3,-5\right \rangle

\displaystyle \left \langle 7,3,5\right \rangle

\displaystyle \left \langle -7,3,-5\right \rangle

\displaystyle \left \langle 7,-3,-5\right \rangle

Correct answer:

\displaystyle \left \langle 7,-3,-5\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , and  elements of the points.

That is, for any point 

 and ,

the distance is the vector 

.

Subbing in our original points \displaystyle (2,4,5) and \displaystyle (9,1,0), we get:

\displaystyle v=\left \langle 9-2,1-4,0-5\right \rangle

\displaystyle v=\left \langle 7,-3,-5\right \rangle

Example Question #61 : Vector Form

Given points \displaystyle (0,0,-4) and \displaystyle (4,9,-1), what is the vector form of the distance between the points?

Possible Answers:

\displaystyle \left \langle -4,9,-3\right \rangle

\displaystyle \left \langle 4,9,-3\right \rangle

\displaystyle \left \langle 4,9,3\right \rangle

\displaystyle \left \langle 4,-9,3\right \rangle

\displaystyle \left \langle -4,9,3\right \rangle

Correct answer:

\displaystyle \left \langle 4,9,3\right \rangle

Explanation:

In order to derive the vector form of the distance between two points, we must find the difference between the , and  elements of the points. That is, for any point  and , the distance is the vector .

Subbing in our original points \displaystyle (0,0,-4) and \displaystyle (4,9,-1), we get:

 \displaystyle v=\left \langle 4-0,9-0,-1+4\right \rangle

\displaystyle v=\left \langle 4,9,3\right \rangle

 

Example Question #401 : Parametric, Polar, And Vector

What is the derivative of the vector function

\displaystyle r(t)=(\cos t, \sin t)?

Possible Answers:

\displaystyle r'(t) = (\sin t,\cos t)

\displaystyle r'(t) = (-\cos t,\sin t)

\displaystyle r'(t) = (\sin t,-\cos t)

\displaystyle r'(t) = (-\sin t,\cos t)

Correct answer:

\displaystyle r'(t) = (-\sin t,\cos t)

Explanation:

The derivative of a vector function has its components consisting of the derivatives of its components:

\displaystyle r'(t) = (-\sin t,\cos t)

since the derivatives of \displaystyle \cos t, \sin t are \displaystyle -\sin t, \cos t, respectively.

Example Question #81 : Linear Algebra

Given the vector function

\displaystyle r(t)=(t,t^2,t^3)

what is the derivative of the vector function?

Possible Answers:

\displaystyle r'(t)=(0,2,6t)

\displaystyle r'(t)=(1,2t,3t^2)

\displaystyle r'(t)=(t^2/2,t^3/3,t^4/4)

\displaystyle r'(t)=(3t^2,2t,1)

Correct answer:

\displaystyle r'(t)=(1,2t,3t^2)

Explanation:

The derivative of a vector function is just the derivative of components:

\displaystyle r'(t)=(f_1'(t),f_2'(t),f_3'(t))=(1,2t,3t^2)

The derivative of each component was found using the power rule which states,

\displaystyle x^n dx=nx^{n-1}.

Thus,

\displaystyle t\ dt=1\cdot t^{1-1}=1\cdot t^0=1,

\displaystyle t^2dt=2t^{2-1}=2t^1=2t,

\displaystyle t^3dt=3t^{3-1}=3t^2.

 

Example Question #442 : Gre Subject Test: Math

What is not a way of describing the circle \displaystyle x^2+y^2=1 in parametric form? Use the time interval \displaystyle t\in[0,2\pi].

Possible Answers:

\displaystyle r(t)=(-\cos t,-\sin -t)

\displaystyle r(t) = (\sin t,\cos t)

All of the other answers describe the circle mentioned in the question.

\displaystyle r(t)=(-\cos t,\sin -t)

Correct answer:

All of the other answers describe the circle mentioned in the question.

Explanation:

All of the vector forms above describe the circle \displaystyle x^2+y^2=1 since if we square their components and add them, we get (using trig. identities): 

\displaystyle (x,y)\rightarrow (cos(x), sin(x))

Therefore we get,

\displaystyle x^2+y^2=\sin^2+\cos^2=1.

Learning Tools by Varsity Tutors