Calculus 2 : Integrals

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #442 : Finding Integrals

Possible Answers:

Correct answer:

Explanation:

First, chop up the fraction into three simplified terms:

Now integrate.

Now add a C because it is an indefinite integral:

Example Question #2542 : Calculus Ii

Calculate the following integral: 

Possible Answers:

Correct answer:

Explanation:

Separate integral into two separate integrals:

  

Solve  first. 

Use power-reducing identity to simplify integral: .

Factor   out of the integral:

Separate into two integrals: .

Use the following substitution for the second integral:   

Plug in substitution and solve:    .

Therefore: 

Solve 

Make the following substitution:      . Plug in substitution and solve: 

Combine answers to two original integrals: 

Example Question #2543 : Calculus Ii

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #2544 : Calculus Ii

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #791 : Integrals

Integrate to lowest terms: 

Possible Answers:

None of the Above

Correct answer:

Explanation:

Screen shot 2016 01 02 at 10.25.11 am

Example Question #2546 : Calculus Ii

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #2547 : Calculus Ii

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #171 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #172 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative: 

Example Question #173 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Answer not listed

Explanation:

In order to evaluate this integral, first find the antiderivative of 

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative: 

Learning Tools by Varsity Tutors