Calculus 2 : Finding Integrals

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #451 : Finding Integrals

Evaluate.

\displaystyle \int_{1}^{2} \sin(10x-3) \ dx

Possible Answers:

\displaystyle 1.3

\displaystyle 5.8

\displaystyle 0.1

\displaystyle 2.9

Answer not listed

Correct answer:

Answer not listed

Explanation:

\displaystyle \int_{a}^{b}f(x) \ dx

In order to evaluate this integral, first find the antiderivative of \displaystyle f(x).

In this case, \displaystyle f(x)= \sin(10x-3).

The antiderivative is  \displaystyle F(x) = -\frac{\cos(10x-3)}{10}.

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative: 

\displaystyle \int_{1}^{2} \sin(10x-3) \ dx = \left ( -\frac{\cos(10x-3)}{10} \right )_{1}^{2}

\displaystyle = -\frac{\cos(10(2)-3)}{10} - \left ( -\frac{\cos(10-3)}{10} \right )

\displaystyle = 0.004

Example Question #174 : Indefinite Integrals

Evaluate.

\displaystyle \int 3 \ dx

Possible Answers:

Answer not listed

\displaystyle F(x) = C

\displaystyle F(x) = 3x+ C

\displaystyle F(x) = \frac{1}{3}x+ C

\displaystyle F(x) = 3x^ 2+ C

Correct answer:

\displaystyle F(x) = 3x+ C

Explanation:

\displaystyle \int f(x) dx

In order to evaluate this integral, first find the antiderivative of \displaystyle f(x).

If \displaystyle f(x) = a then \displaystyle F(x) = ax + C

If \displaystyle f(x) = x a then \displaystyle F(x) = \frac{x^{a+1}}{a+1} + C

If \displaystyle f(x) = \frac{1}{x} then \displaystyle F(x) = ln(x) + C

If \displaystyle f(x) = e ^x then \displaystyle F(x) = e^x + C

If \displaystyle f(x) = \cos(x) then \displaystyle F(x) = \sin(x) + C

If \displaystyle f(x) = \sin(x) then \displaystyle F(x) = - \cos(x) + C

If \displaystyle f(x) = \sec^2 (x) then \displaystyle F(x) = \tan(x) + C

 

In this case, \displaystyle f(x) = 3.

The antiderivative is  \displaystyle F(x) = 3x+ C.

Example Question #801 : Integrals

Evaluate \displaystyle \int \frac{3x}{1+x^4}dx

Possible Answers:

\displaystyle \frac{3}{2}\sin^{-1}(x^2)+C

\displaystyle \frac{3}{2}\cos^{-1}(x^2)+C

\displaystyle \frac{3}{2}\ln({1+x^4})+C

\displaystyle \frac{3}{2}\tan^{-1}(x^2)+C

None of the other answers

Correct answer:

\displaystyle \frac{3}{2}\tan^{-1}(x^2)+C

Explanation:

This integral can be evaluated using \displaystyle u-substitution.

\displaystyle u = x^2

\displaystyle du=2x dx

Then we can proceed as follows

\displaystyle \int \frac{3x}{1+x^4}dx (Start)

\displaystyle = \frac{3}{2}\int \frac{2x}{1+x^4}dx (Factor out a \displaystyle 3/2, leaving a \displaystyle 2x in the numerator)

\displaystyle =\frac{3}{2}\int \frac{1}{1+u^2}du (Substitute the equations for \displaystyle u, du)

\displaystyle =\frac{3}{2}\tan^{-1}(u)+C (Integrate, recall that \displaystyle \frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2})

\displaystyle =\frac{3}{2}\tan^{-1}(x^2)+C (Substitute \displaystyle x^2 back in)

Example Question #171 : Indefinite Integrals

\displaystyle \int (e^x+4)dx

Possible Answers:

\displaystyle e^x+C

\displaystyle e^x+4x+C

\displaystyle e^x+4+C

\displaystyle xe^x+4+C

\displaystyle e^x

Correct answer:

\displaystyle e^x+4x+C

Explanation:

The anti-derivative of \displaystyle e^x is simply \displaystyle e^x.  This is the perfect function that no matter if you take the derivative or the anti-derivative, it always returns back the original function.  The integral of the constant returns the constant multiplied by the integration variable.  Then, since this is an indefinite integral, we must include the integration constant, \displaystyle C.

\displaystyle \int(e^x+4)dx= e^x+4x+C.

Example Question #452 : Finding Integrals

\displaystyle \int cos(3x)dx

Possible Answers:

\displaystyle \frac{-sin(3x)}{3} +C

\displaystyle sin(3x) +C

\displaystyle \frac{sin(3x)}{3} +C

\displaystyle -sin(3x) +C

\displaystyle 3sin(3x)+C

Correct answer:

\displaystyle \frac{sin(3x)}{3} +C

Explanation:

The indefinite integral is a reverse chain rule.  Remember, anti-derivatives are the exact opposite of the derivative of this function.  So, let's start there:

\displaystyle cos(3x)'=-3sin(3x).

Therefore, to undo this answer, we would have to get rid of the negative sign and divide by the chain rule part.  We also add our integration constant.  You would get the same result (but longer time) if you used u-substitution. 

\displaystyle \int cos(3x)dx= \frac{sin(3x)}{3}+C.

Example Question #453 : Finding Integrals

Evaluate the following indefinite integral:

\displaystyle \int (x^4-2x^2+6)dx

Possible Answers:

\displaystyle 4x^3+4x+C

\displaystyle \frac{x^6}{30}-\frac{x^4}{6}+3x^2+C

\displaystyle \frac{x^5}{5}-\frac{2x^3}{3}+6x+C

\displaystyle \frac{x^3}{4}-\frac{x}{4}+\frac{1}{6}+C

\displaystyle \frac{x^3}{3}-4x+C

Correct answer:

\displaystyle \frac{x^5}{5}-\frac{2x^3}{3}+6x+C

Explanation:

This integral requires use of the power rule for antiderivatives, which simplifies as follows:

\displaystyle \int (x^4-2x^2+6)dx=\int x^4dx-2\int x^2 dx+6\int dx

\displaystyle =(\frac{1}{5}\cdot x^5)-2 (\frac{1}{3}\cdot x^3)+6(x)+C=\frac{x^5}{5}-\frac{2x^3}{3}+6x+C

Example Question #454 : Finding Integrals

Evaluate the following indefinite integral:

\displaystyle \int x^2\sec^2(3x^3)dx

Possible Answers:

\displaystyle -\frac{\cot(3x^2)}{3}+C

\displaystyle \frac{\tan(3x^2)}{3}+C

\displaystyle \frac{\tan(3x^2)}{9}+C

\displaystyle 3\csc(3x^3)\cot({3x^3})+C

\displaystyle 9\csc( 3x^2)+C

Correct answer:

\displaystyle \frac{\tan(3x^2)}{9}+C

Explanation:

Make the substitution:

\displaystyle u=3x^3

where

\displaystyle du=9x^2dx\rightarrow \frac{du}{9}=x^2dx

Substituting this into the original expression:

\displaystyle \int x^2\sec^2(3x^3)dx=\int\frac{\sec^2(u)}{9}du=\frac{\tan(u)}{9}+C=\frac{\tan(3x^3)}{9}+C

Example Question #455 : Finding Integrals

Evaluate the following indefinite integral:

\displaystyle \int x\ln(x)dx

Possible Answers:

\displaystyle \frac{x}{2}+C

\displaystyle \frac{x^2}{4}(2\ln(x)-1)+C

\displaystyle \frac{1}{4}(2\ln(x^2)-x^2)+C

\displaystyle \frac{x^2}{2}(\ln(x)-\frac{1}{x})+C

\displaystyle \frac{x^2\ln(x)}{2}+C

Correct answer:

\displaystyle \frac{x^2}{4}(2\ln(x)-1)+C

Explanation:

To solve this with integration by parts, we rewrite the expression in the form

\displaystyle \int u \: dv

where

\displaystyle u=\ln(x), \: \: \:dv=x\, dx

and

\displaystyle du=\frac{1}{x}dx,\: \: \:v=\frac{x^2}{2}

To integrate, apply the formula for integration by parts:

\displaystyle \int u \: dv=uv-\int vdu=\frac{1}{2}x^2\ln(x)-\int (\frac{x^2}{2}\cdot \frac{1}{x})dx

\displaystyle =\frac{x^2}{2}\ln(x)-\frac{1}{2}\int xdx=\frac{x^2\ln(x)}{2}-\frac{x^2}{4}+C=\frac{x^2}{4}(2\ln(x)-1)+C

Example Question #456 : Finding Integrals

Evaluate the following indefinite integral:

\displaystyle \int\sqrt{9-x^2}\, dx

Possible Answers:

\displaystyle \frac{\sqrt{9-x^2}}{2}+\frac{9}{2}\sin^{-1}(x)+C

\displaystyle \frac{x\sqrt{9-x^2}}{2}+\frac{9}{2}\sin^{-1}(\frac{x}{3})+C

\displaystyle \frac{x\sqrt{9-x^2}}{2}+\frac{9}{2}\cos^{-1}(\frac{x}{3})+C

\displaystyle \frac{x\sqrt{9-x^2}}{2}+\frac{9}{2}\cos^{-1}(x)+C

\displaystyle \frac{\sqrt{9-x^2}}{2}+\frac{9}{2}\cos^{-1}(x)+C

Correct answer:

\displaystyle \frac{x\sqrt{9-x^2}}{2}+\frac{9}{2}\sin^{-1}(\frac{x}{3})+C

Explanation:

Make the trigonometric substitution:

\displaystyle x=3\sin(a),\: \: \:dx=3\cos(a)da

Applying this to the expression given:

\displaystyle \int\sqrt{9-x^2}\, dx=\int3\cos(a)\sqrt{9(1-\sin^2a)}\, da=\int9\cos^2(a)da

\displaystyle =9[\frac{1}{2}\cos(a)\sin(a)+\frac{a}{2}=\frac{x\sqrt{9-x^2}}{2}+\frac{9}{2}\sin^{-1}(\frac{x}{3})+C

Example Question #457 : Finding Integrals

Evaluate the following indefinite integral:

\displaystyle \int\frac{1}{x^2\sqrt{x^2-25}}\,dx

Possible Answers:

\displaystyle \frac{\sqrt{x^2-25}}{5}+C

\displaystyle \frac{x^2-25}{5x}+C

\displaystyle \frac{\sqrt{x^2-25}}{25x}+C

\displaystyle \frac{\sqrt{x^2-25}}{25}+C

\displaystyle \frac{\sqrt{x^2-25}}{5x}+C

Correct answer:

\displaystyle \frac{\sqrt{x^2-25}}{25x}+C

Explanation:

Make the trigonometric substitution:

\displaystyle x=5\sec(a),\,\,\,dx=5\tan(a)\sec(a)da

Applying this substitution to the expression given, we can integrate:

\displaystyle \int\frac{1}{x^2\sqrt{x^2-25}}\,dx=\int\frac{5\tan(a)\sec(a)}{25\sec^2(a) \sqrt{25\sec^2(a)-25}} da

\displaystyle =\int\frac{5\tan(a)}{125\sec(a)\tan(a)}da=\int\frac{da}{25\sec(a)}=\int\frac{\cos(a)}{25}da

\displaystyle =\frac{sin(a)}{25}+C=\frac{\sqrt{x^2-25}}{25x}+C

Learning Tools by Varsity Tutors