Calculus 2 : Fundamental Theorem of Calculus

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Fundamental Theorem Of Calculus

Given 

, what is ?

Possible Answers:

Correct answer:

Explanation:

By the Fundamental Theorem of Calculus, for all functions  that are continuously defined on the interval  with  in  and for all functions  defined by by , we know that .

Thus, since 

.

Therefore, 

.

Example Question #12 : Fundamental Theorem Of Calculus

Given , what is ?

Possible Answers:

Correct answer:

Explanation:

According to the Fundamental Theorem of Calculus, if  is a continuous function on the interval  with  as the function defined for all  on  as , then . Therefore, if  , then  . Thus,  .

Example Question #161 : Introduction To Integrals

Evaluate the definite integral using the Fundamental Theorem of Calculus.

Possible Answers:

Correct answer:

Explanation:

The antiderivative of   is  .

Evaluating  (by the fundamental theorem of calculus) gives us...

Example Question #161 : Introduction To Integrals

Solve

Possible Answers:

Correct answer:

Explanation:

The antiderivative of   is  .

Evaluating  (by the fundamental theorem of calculus) gives us...

 

Example Question #161 : Integrals

Evaluate the definite integral using the Fundamental Theorem of Calculus.

Possible Answers:

Correct answer:

Explanation:

The antiderivative of  is .

By evaluating  (by the fundamental theorem of calculus) we get...

 

Example Question #162 : Introduction To Integrals

Evaluate the definite integral using the Fundamental Theorem of Calculus.

Possible Answers:

Correct answer:

Explanation:

The antiderivative of  is .

By evaluating  (by the fundamental theorem of calculus) we get...

 

Example Question #163 : Introduction To Integrals

Given , what is ?

Possible Answers:

Correct answer:

Explanation:

According to the Fundamental Theorem of Calculus, if  is a continuous function on the interval  with  as the function defined for all  on  as 

, then .

Therefore, if 

, then 

.

Thus, 

.

Example Question #13 : Fundamental Theorem Of Calculus

Given , what is ?

Possible Answers:

Correct answer:

Explanation:

According to the Fundamental Theorem of Calculus, if  is a continuous function on the interval  with  as the function defined for all  on  as 

, then .

Therefore, if 

, then 

.

Thus, 

.

Example Question #164 : Introduction To Integrals

Given , what is ?

Possible Answers:

Correct answer:

Explanation:

According to the Fundamental Theorem of Calculus, if  is a continuous function on the interval  with  as the function defined for all  on  as 

, then .

Therefore, if 

.

Thus, 

.

Example Question #165 : Introduction To Integrals

Write  in integral form, if  is position and  where  is velocity at time 

Possible Answers:

Correct answer:

Explanation:

To write position in integral form, we can take advantage of the fundamental theorem of calculus. Since the bounds are  and , and 

 

Learning Tools by Varsity Tutors