Calculus 2 : Derivatives

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #7 : Computation Of Derivatives

What is the rate of change of the function \(\displaystyle f(x)=1+2x+3x^4\) at the point \(\displaystyle (1,6)\)?

Possible Answers:

\(\displaystyle 2594\)

\(\displaystyle 14\)

\(\displaystyle 15\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 14\)

Explanation:

The rate of change of a function at a point is the value of the derivative at that point. First, take the derivative of f(x) using the power rule for each term.

Remember that the power rule is 

\(\displaystyle \frac{d}{dx}x^n=nx^{n-1}\), and that the derivative of a constant is zero.

\(\displaystyle f'(x)=2+12x^3\)

Next, notice that the x-value of the point (1,6) is 1, so substitute 1 for x in the derivative.

\(\displaystyle f'(1)=2+12(1)^3=14\)

Therefore, the rate of change of f(x) at the point (1,6) is 14. 

Example Question #1311 : Calculus Ii

Calculate the derivative of \(\displaystyle f(x)=4x^2-x+2\) at the point \(\displaystyle x=1\).

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 9\)

\(\displaystyle 10\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 7\)

Explanation:

There are 2 steps to solving this problem.

First, take the derivative of \(\displaystyle f(x)\).

Then, replace the value of x with the given point.

For example, if \(\displaystyle x=a\), then we are looking for the value of \(\displaystyle f'(x=a)\), or the derivative of \(\displaystyle f(x)\) at \(\displaystyle x=a\).

\(\displaystyle f(x)=4x^2-x+2\)

Calculate \(\displaystyle f'(x)\)

Derivative rules that will be needed here:

  • Derivative of a constant is 0. For example, \(\displaystyle \frac{\mathrm{d} }{\mathrm{d} t} 5 = 0\)
  • Taking a derivative on a term, or using the power rule, can be done by doing the following: \(\displaystyle \frac{\mathrm{d} }{\mathrm{d} t} t^n = n * t^{n-1}\)

\(\displaystyle f'(x)=8x-1\)

Then, plug in the value of x and evaluate

\(\displaystyle f'(x=1)=8*1-1 = 7\)

Example Question #191 : Derivatives

Evaluate the first derivative if

\(\displaystyle f(x)=2e^x\) and \(\displaystyle x=0\).

Possible Answers:

\(\displaystyle f'(0)=e\)

\(\displaystyle f'(0)=1\)

\(\displaystyle f'(0)=0\)

\(\displaystyle f'(0)=2\)

Correct answer:

\(\displaystyle f'(0)=2\)

Explanation:

First we must find the first derivative of the function.

Because the derivative of the exponential function is the exponential function itelf, or

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}[e^x]=e^x\)

and taking the derivative is a linear operation,

we have that

\(\displaystyle f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}[f(x)]\)

\(\displaystyle =\frac{\mathrm{d} }{\mathrm{d} x}[2e^x]\)

\(\displaystyle =2\frac{\mathrm{d} }{\mathrm{d} x}[e^x]\)

\(\displaystyle =2e^x\)

Now setting \(\displaystyle x=0\)

\(\displaystyle f'(0)=2e^0=2*1=2\)

Thus

\(\displaystyle f'(0)=2\)

Example Question #1313 : Calculus Ii

What is the derivative of (2+3cos(3x))^\pi\(\displaystyle (2+3cos(3x))^\pi\)?

Possible Answers:

-3\pi(2+cos(3x))^{\pi-1}cos(3x)\(\displaystyle -3\pi(2+cos(3x))^{\pi-1}cos(3x)\)

3\pi(2+cos(3x))^{\pi-1}cos(3x)\(\displaystyle 3\pi(2+cos(3x))^{\pi-1}cos(3x)\)

-3\pi(2+cos(3x))^{\pi-1}sin(3x)\(\displaystyle -3\pi(2+cos(3x))^{\pi-1}sin(3x)\)

-3\pi(2+cos(3x))^{\pi-1}\(\displaystyle -3\pi(2+cos(3x))^{\pi-1}\)

3\pi(2+cos(3x))^{\pi-1}sin(3x)\(\displaystyle 3\pi(2+cos(3x))^{\pi-1}sin(3x)\)

Correct answer:

-3\pi(2+cos(3x))^{\pi-1}sin(3x)\(\displaystyle -3\pi(2+cos(3x))^{\pi-1}sin(3x)\)

Explanation:

Need to use the power rule which states: \frac{d}{dx}u^n=nu^{n-1}\frac{du}{dx}\(\displaystyle \frac{d}{dx}u^n=nu^{n-1}\frac{du}{dx}\)

 

In our problem \frac{du}{dx}=-3sin(3x)\(\displaystyle \frac{du}{dx}=-3sin(3x)\)

Example Question #1 : Computation Of Derivatives

\(\displaystyle f (x) = 7x^{2} + 6x - 9\)

Give \(\displaystyle f'(x)\).

Possible Answers:

\(\displaystyle f'(x) = 14x+6\)

\(\displaystyle f'(x) = 14x\)

\(\displaystyle f'(x) = 14x^{2}+6x\)

\(\displaystyle f'(x) = 14x+12\)

\(\displaystyle f'(x) = 7x+6\)

Correct answer:

\(\displaystyle f'(x) = 14x+6\)

Explanation:

 \(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left (ax^{n} \right )= n\cdot ax^{n-1}\), and the derivative of a constant is 0, so

\(\displaystyle f (x) = 7x^{2} + 6x - 9\)

\(\displaystyle f ' (x) = 7\cdot 2\cdot x^{2-1} + 6\cdot 1 + 0\)

\(\displaystyle f ' (x) = 14\cdot x^{1} + 6\)

\(\displaystyle f ' (x) = 14x + 6\)

Example Question #2 : Computation Of Derivatives

\(\displaystyle f(x)= 8x^{3}-7x^{2}+11\)

Give \(\displaystyle f''(x)\).

Possible Answers:

\(\displaystyle f ''(x) = 24x\)

\(\displaystyle f ''(x) = 24x -14\)

\(\displaystyle f ''(x) = 48x -14\)

\(\displaystyle f ''(x) = 48x\)

\(\displaystyle f ''(x) = 24x - 11\)

Correct answer:

\(\displaystyle f ''(x) = 48x -14\)

Explanation:

First, find the derivative \(\displaystyle f'(x)\) of \(\displaystyle f(x)= 8x^{3}-7x^{2}+11\).

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left (ax^{n} \right )= n\cdot ax^{n-1}\), and the derivative of a constant is 0, so

\(\displaystyle f(x)= 8x^{3}-7x^{2}+11\)

\(\displaystyle f'(x)= 3 \cdot 8x^{3-1}-2\cdot 7x^{2-1}+0\)

\(\displaystyle f'(x)= 24x^{2}-14x^{1}\)

\(\displaystyle f'(x)= 24x^{2}-14x\)

 

Now, differentiate \(\displaystyle f'(x)\) to get \(\displaystyle f''(x)\).

\(\displaystyle f''(x)= 2 \cdot 24x^{2-1}-1\cdot 14x^{1-1}\)

\(\displaystyle f''(x)= 48x^{1}-14x^{0}\)

\(\displaystyle f''(x)= 48x-14\)

Example Question #3 : Computation Of Derivatives

Differentiate \(\displaystyle x^{999}\).

Possible Answers:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left ( x^{999}\right ) = 999x^{998}\)

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left ( x^{999}\right ) = 998x^{1,000}\)

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left ( x^{999}\right ) = 1,000x^{1,000}\)

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left ( x^{999}\right ) = 998x^{998}\)

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left ( x^{999}\right ) = 998x^{999}\)

Correct answer:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left ( x^{999}\right ) = 999x^{998}\)

Explanation:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left (x^{n} \right )= n\cdot x^{n-1}\), so

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left ( x^{999}\right ) = 999x^{999-1} = 999x^{998}\)

Example Question #4 : Computation Of Derivatives

Give the second derivative of \(\displaystyle x^{777}\).

Possible Answers:

\(\displaystyle \frac{\mathrm{d^{2}} }{\mathrm{d} x^{2}} \left ( x^{777}\right ) = 603,729 x^{775}\)

\(\displaystyle \frac{\mathrm{d^{2}} }{\mathrm{d} x^{2}} \left ( x^{777}\right ) = 602,952 x^{779}\)

\(\displaystyle \frac{\mathrm{d^{2}} }{\mathrm{d} x^{2}} \left ( x^{777}\right ) = 604,506 x^{779}\)

\(\displaystyle \frac{\mathrm{d^{2}} }{\mathrm{d} x^{2}} \left ( x^{777}\right ) = 602,952 x^{775}\)

\(\displaystyle \frac{\mathrm{d^{2}} }{\mathrm{d} x^{2}} \left ( x^{777}\right ) = 603,729 x^{777}\)

Correct answer:

\(\displaystyle \frac{\mathrm{d^{2}} }{\mathrm{d} x^{2}} \left ( x^{777}\right ) = 602,952 x^{775}\)

Explanation:

Find the derivative of \(\displaystyle x^{777}\), then find the derivative of that expression.

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left (ax^{n} \right )= n\cdot ax^{n-1}\), so

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left (x^{777} \right )= 777\cdot x^{777-1} = 777x^{776}\)

\(\displaystyle \frac{\mathrm{d^{2}} }{\mathrm{d} x^{2}} \left ( x^{777}\right ) = \frac{\mathrm{d} }{\mathrm{d} x} \left ( 777x^{776} \right )= 777\cdot776\cdot x^{776-1} = 602,952x^{775}\)

Example Question #5 : Computation Of Derivatives

\(\displaystyle f(x)= 0.8x^{3}-0.5x^{2}+ 0.9\)

Give \(\displaystyle f'(x)\).

Possible Answers:

\(\displaystyle f'(x) = 2.4x^{2}-1\)

\(\displaystyle f'(x) = 2.4x^{3}-x^{2}+ 0.9\)

\(\displaystyle f'(x) = 2.4x^{2}-x + 0.9\)

\(\displaystyle f'(x) = 2.4x^{2}-x\)

\(\displaystyle f'(x) = 2.4x^{3}-x^{2}\)

Correct answer:

\(\displaystyle f'(x) = 2.4x^{2}-x\)

Explanation:

\(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left (ax^{n} \right )= n\cdot ax^{n-1}\), and the derivative of a constant is 0, so

\(\displaystyle f(x)= 0.8x^{3}-0.5x^{2}+ 0.9\)

\(\displaystyle f'(x)= 3\cdot 0.8 x^{3-1}-2\cdot 0.5x^{2-1}+ 0\)

\(\displaystyle f'(x)= 2.4x^{2}-1x^{1}\)

\(\displaystyle f'(x) = 2.4x^{2}-x\)

Example Question #6 : Computation Of Derivatives

\(\displaystyle f(x) =0.9x^{4} + 0.7x^{3}- 0.5 x\)

Give \(\displaystyle f''(x)\).

Possible Answers:

\(\displaystyle f''(x) =10.8x^{2} + 2.1x\)

\(\displaystyle f''(x) =10.8x^{2} + 8.4x\)

\(\displaystyle f''(x) =10.8x^{2} + 8.4x - 0.5\)

\(\displaystyle f''(x) =10.8x^{2} + 4.2x - 0.5\)

\(\displaystyle f''(x) =10.8x^{2} + 4.2x\)

Correct answer:

\(\displaystyle f''(x) =10.8x^{2} + 4.2x\)

Explanation:

First, find the derivative \(\displaystyle f'(x)\) of \(\displaystyle f(x) =0.9x^{4} + 0.7x^{3}- 0.5 x\).

Recall that \(\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \left (ax^{n} \right )= n\cdot ax^{n-1}\), and the derivative of a constant is 0.

\(\displaystyle f(x) =0.9x^{4} + 0.7x^{3}- 0.5 x\)

\(\displaystyle f'(x) =4\cdot 0.9x^{4-1} + 3\cdot 0.7x^{3-1}- 1 \cdot 0.5 x ^{1-1}\)

\(\displaystyle f'(x) =3.6x^{3} + 2.1x^{2}- 0.5 x ^{0}\)

\(\displaystyle f'(x) =3.6x^{3} + 2.1x^{2}- 0.5\)

 

Now, differentiate \(\displaystyle f'(x)\) to get \(\displaystyle f''(x)\).

\(\displaystyle f'(x) =3.6x^{3} + 2.1x^{2}- 0.5\)

\(\displaystyle f''(x) =3 \cdot 3.6x^{3-1} + 2 \cdot 2.1x^{2-1}- 0\)

\(\displaystyle f''(x) =10.8x^{2} + 4.2x^{1}- 0\)

\(\displaystyle f''(x) =10.8x^{2} + 4.2x\)

Learning Tools by Varsity Tutors