Calculus 1 : How to find differential functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #373 : Functions

Find the derivative of the function \displaystyle f(x)=cos(x^3+2x^2+x+3).

Possible Answers:

\displaystyle (3x^2+4x+1)cos(x^3+2x^2+x+3)

\displaystyle -(3x^2+4x+1)sin(3x^2+4x+1)

\displaystyle (3x^2+4x+1)cos(3x^2+4x+1)

\displaystyle -sin(x^3+2x^2+x+3)

\displaystyle -(3x^2+4x+1)sin(x^3+2x^2+x+3)

Correct answer:

\displaystyle -(3x^2+4x+1)sin(x^3+2x^2+x+3)

Explanation:

To find the derivative of this function, \displaystyle f(x)=cos(x^3+2x^2+x+3), utilize the chain rule:

\displaystyle cos(g(x))'=-g'(x)sin(g(x))

Where

\displaystyle g(x)=x^3+2x^2+x+3

Performing the derivative gives:

\displaystyle g'(x)=3x^2+4x+1

So the derivative is:

\displaystyle f'(x)=-(3x^2+4x+1)sin(x^3+2x^2+x+3)

Example Question #191 : How To Find Differential Functions

Find the derivative of the function \displaystyle f(x)=\frac{e^{x^2}}{ln(x)}.

Possible Answers:

\displaystyle \frac{2x^2e^{x^2}ln(x)-e^{x^2}}{xln^2(x)}

\displaystyle \frac{2x^2e^{x^2}ln(x)-e^{x^2}}{ln(x)}

\displaystyle \frac{2x^2e^{x^2}ln(x)+e^{x^2}}{xln^2(x)}

\displaystyle {2x^2e^{x^2}ln(x)-e^{x^2}}

\displaystyle \frac{2x^2e^{x^2}ln(x)+xe^{x^2}}{ln^2(x)}

Correct answer:

\displaystyle \frac{2x^2e^{x^2}ln(x)-e^{x^2}}{xln^2(x)}

Explanation:

For the function \displaystyle f(x)=\frac{e^{x^2}}{ln(x)}, it will be useful to utilize the chain rule and quotient rule of derivatives.

The quotient rule states:

\displaystyle \frac{d}{dx}\frac{u}{v}=\frac{vdu-udv}{v^2}

Thus

\displaystyle f'(x)=\frac{ln(x)(e^{x^2})'-e^{x^2}(ln(x))'}{ln^2(x)}

The \displaystyle ln(x)' value is simply \displaystyle \frac{1}{x}.

To find the value of , note that it should follow the form

\displaystyle e^{g(x)}=g'(x)e^{g(x)}

Putting everything together:

\displaystyle f'(x)=\frac{2xe^{x^2}ln(x)-\frac{1}{x}e^{x^2}}{ln^2(x)}

\displaystyle f'(x)=\frac{2x^2e^{x^2}ln(x)-e^{x^2}}{xln^2(x)}

Example Question #375 : Functions

What is the first derivative of \displaystyle f(x)=3x^{2}\cos(x)?

Possible Answers:

\displaystyle -x\sin(x+1)

\displaystyle 2\cos(2x)

\displaystyle -3x^{2}\sin(x)

\displaystyle 6x\cos(x)-4\sin(x)

\displaystyle 6x\cos(x)-3x^{2}\sin(x)

Correct answer:

\displaystyle 6x\cos(x)-3x^{2}\sin(x)

Explanation:

To solve this problem, we must use the following formulae:

\displaystyle \frac{d}{dx}(f(x)g(x))=f'(x)g(x)+f(x)g'(x), \frac{d}{dx}(cx^{n})=ncx^{n-1}

\displaystyle \frac{d}{dx}\cos(x)=-\sin(x)

Where \displaystyle f(x)=3x^{2} and \displaystyle g(x)=\cos(x)

\displaystyle \frac{d}{dx}(3x^{2}\cos(x))=3*2x^{2-1}\cos(x)-3x^{2}\sin(x)=6x\cos(x)-3x^{2}\sin(x)

Example Question #381 : Differential Functions

Find the derivative of \displaystyle f(x)=\frac{ln(x)}{1+sin(x)}

Possible Answers:

\displaystyle \frac{\frac{sin(x)}{x}-cos(x)ln(x)}{sin^{2}(x)+2sin(x)+1}

\displaystyle \frac{\frac{1+sin^{2}(x)}{x}-cos(x)ln(x)}{sin^{2}(x)+2sin(x)+1}

\displaystyle \frac{\frac{1+sin(x)}{x}-cos(x)ln(x)}{sin^{2}(x)+2sin(x)+1}

\displaystyle \frac{\frac{1+sin(x)}{x}-cos(x)ln(x)}{sin^{2}(x)}

\displaystyle \frac{\frac{1}{x}-cos(x)ln(x)}{sin^{2}(x)+2sin(x)+1}

Correct answer:

\displaystyle \frac{\frac{1+sin(x)}{x}-cos(x)ln(x)}{sin^{2}(x)+2sin(x)+1}

Explanation:

To find this derivative, we need to use the following formulae: 

\displaystyle \frac{d}{dx}(\frac{g(x)}{h(x)})=\frac{g'(x)h(x)-g(x)h'(x)}{g(x)^{2}}

\displaystyle \frac{d}{dx} \sin(x)= \cos(x), \frac{d}{dx} \ln(x)=\frac{1}{x}, \frac{d}{dx}(c)=0

Where \displaystyle g(x)=\ln(x) and \displaystyle h(x)=1+\sin(x).

\displaystyle \frac{\frac{1}{x}*(1+sin(x))-cos(x)ln(x))}{(sin(x)+1)^{2}}\displaystyle =\frac{\frac{1+sin(x)}{x}-cos(x)ln(x)}{sin^{2}(x)+2sin(x)+1}

Example Question #191 : Other Differential Functions

What is the first derivative of \displaystyle f(x)=3^{\csc(x)}?

Possible Answers:

\displaystyle \csc(x)\cot(x)\ln(3)*3^{csc(x)}

\displaystyle -\csc(x)\cot(x)*3^{\csc(x)}

\displaystyle -\csc(x)\ln(3)*3^{csc(x)}

\displaystyle -\cot(x)\ln(3)*3^{\csc(x)}

\displaystyle -\csc(x)\cot(x)\ln(3)*3^{\csc(x)}

Correct answer:

\displaystyle -\csc(x)\cot(x)\ln(3)*3^{\csc(x)}

Explanation:

To find the derivative of \displaystyle f(x), we need the following formulae:

\displaystyle \frac{d}{dx} \csc(x)=-\csc(x)\cot(x), \frac{d}{dx} f(g(x))=f'(g(x))g'(x)

\displaystyle \frac{d}{dx} a^{x}=a^{x}\ln(a)

\displaystyle f'(x)=\ln(3)*3^{\csc(x)}*-\csc(x)\cot(x)

Example Question #382 : Differential Functions

Find \displaystyle f'(x) if \displaystyle f(x)=\log_{4}(x^{3}).

Possible Answers:

\displaystyle \frac{3}{ln(4)}

\displaystyle \frac{3}{4xln(4)}

\displaystyle \frac{-3}{xln(4)}

\displaystyle \frac{1}{xln(4)}

\displaystyle \frac{3}{xln(4)}

Correct answer:

\displaystyle \frac{3}{xln(4)}

Explanation:

To find the derivative of f(x), we must use the following formulae:

\displaystyle \\ \frac{d}{dx}(\log{_{a}}(x))=\frac{1}{x\ln(a)},\\ \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)

In this particular case,

\displaystyle \\a=4, \\ g(x)=x^3

thus our derivative becomes,

\displaystyle f'(x)= \frac{1}{x^{3}ln(4)}*3x^{2} = \frac{3}{xln(4)}.

Example Question #382 : Differential Functions

Find the first derivative of \displaystyle f(x)=\ln(2x^{2}).

Possible Answers:

\displaystyle \frac{4}{x}

\displaystyle \frac{-2}{x}

\displaystyle \frac{2}{x}

\displaystyle \frac{2}{x^{2}}

\displaystyle \frac{2}{3x}

Correct answer:

\displaystyle \frac{2}{x}

Explanation:

To find the first derivative of \displaystyle f(x), we must use the following formulae:

\displaystyle \frac{d}{dx} \ln(x)=\frac{1}{x}, \frac{d}{dx} f(g(x))=f'(g(x))g'(x) 

Applying these rules we can find the following derivative.

Let,

\displaystyle \\f(x)=\frac{1}{2x^2}\\ \\g(x)=2x^2

therefore we get,

\displaystyle f'(x)= \frac{1}{2x^{2}}*4x= \frac{2}x{}.

Example Question #383 : Differential Functions

Find the first derivative of \displaystyle f(x)=x^{4}\cos(2x).

Possible Answers:

\displaystyle 4x^{3}\cos(2x)+2x^{4}\sin(2x)

\displaystyle x^{3}\cos(2x)-x^{4}\sin(2x)

\displaystyle 4x^{3}\cos(x)-2x^{5}\sin(2x)

\displaystyle 4x^{3}\cos(2x)-2x^{4}\sin(2x)

\displaystyle 4x^{3}\cos(2x)-2x\sin(2x)

Correct answer:

\displaystyle 4x^{3}\cos(2x)-2x^{4}\sin(2x)

Explanation:

To find this derivative, we need to use the following formulae:

\displaystyle \\ \frac{d}{dx}(x^{n}))=nx^{n-1}, \\ \\ \frac{d}{dx} f(x)g(x)=f'(x)g(x)+f(x)g'(x)

\displaystyle \\ \frac{d}{dx} \cos(x)= -\sin(x),\\ \\ \frac{d}{dx} f(g(x))=f'(g(x))g'(x)

Applying these rules where 

\displaystyle \\ f(x)=x^4 \\ \\ g(x)=\cos(2x)

therefore we get,

\displaystyle f'(x)=4x^{3}\cos(2x)-x^{4}\sin(2x)*2.

 

Example Question #1415 : Calculus

Find the derivative of \displaystyle f(x)=3x^{2}\tan(7x).

Possible Answers:

\displaystyle x\tan(7x)+21x^{2}\sec^{2}(7x)

\displaystyle 6x\tan(7x)+21x^{2}\sec^{2}(7x)

\displaystyle 6x\tan(7x)+3x^{2}\sec^{2}(7x)

\displaystyle 6x\tan(7x)+21x\sec^{2}(7x)

\displaystyle 6x\tan(7x)

Correct answer:

\displaystyle 6x\tan(7x)+21x^{2}\sec^{2}(7x)

Explanation:

To find this derivative, we must use the product rule, power rule, chain rule, and trigonometric derivative rule for tangent.

Lets recall the product rule,

\displaystyle \frac{d}{dx} f(x)g(x)=f'(x)g(x)+f(x)g'(x)

In this particular problem,

\displaystyle f(x)=3x^2 and \displaystyle g(x)=tan(7x).

In order to find \displaystyle f'(x) we will need to use the power rule which states, 

\displaystyle \frac{d}{dx}x^n=nx^{n-1}.

Therefore,

\displaystyle f'(x)=2\cdot 3x^{2-1}=6x.

To find \displaystyle g'(x) we need to use the chain rule which states,

\displaystyle \frac{d}{dx} h(i(x))=h'(i(x))i'(x)

where \displaystyle h(x)=tan(7x) and \displaystyle i(x)=7x.

To find \displaystyle h'(x) we will need to use the trigonometric derivative rule for tangent which states,

\displaystyle \frac{d}{dx}tan(x)=sec^2(x) and to find \displaystyle i'(x) we will again use the power rule.

Thus,

\displaystyle h'(x)=sec^2(7x) and \displaystyle i'(x)=7\cdot 1x^{1-1}=7.

This then makes,

\displaystyle g'(x)=7sec^2(7x).

Now lets combine our terms using the product rule to find the final derivative.

\displaystyle \\f'(x)=6x\tan(7x)+3x^{2}\cdot 7sec^{2}(7x) \\ f'(x)= 6x\tan(7x)+21x^{2}sec^{2}(7x)

 

Example Question #384 : Differential Functions

What is the derivative of \displaystyle x^{e^{-2x}}?

Possible Answers:

\displaystyle e^{-2x}x^{e^{-2x}-1}

\displaystyle -2e^{-2x}x^{e^{-2x}-1}

\displaystyle -2e^{-2x}

\displaystyle -2e^{-2x}x^{e^{-2x}}

\displaystyle -2e^{-2x}x

Correct answer:

\displaystyle -2e^{-2x}x^{e^{-2x}-1}

Explanation:

This problem relies on the chain rule

\displaystyle \frac{d}{dx}f(g(x))=f'(g(x))g'(x).

First, you have x to something, so you must use the power rule

\displaystyle \frac{d}{dx}x^n=nx^{n-1}

to get 

\displaystyle (e^{-2x})'x^{e^{-2x}-1}.

Using the chain rule, this becomes \displaystyle -2e^{-2x}x^{e^{-2x}-1}.

Learning Tools by Varsity Tutors