Calculus 1 : Equations

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #111 : How To Find Integral Expressions

Evaluate the integral:

\(\displaystyle \int \frac{dx}{\sqrt{x+5}}\)

Possible Answers:

\(\displaystyle 2\ln(\sqrt{x+5})+C\)

\(\displaystyle \ln(x+5)^{\frac{1}{2}}+C\)

\(\displaystyle \ln(\sqrt{x+5})+C\)

\(\displaystyle (x+5)^{\frac{1}{2}}+C\)

Correct answer:

\(\displaystyle 2\ln(\sqrt{x+5})+C\)

Explanation:

To integrate, we must make the following subsitution:

\(\displaystyle u=(x+5)^{\frac{1}{2}}, du=\frac{1}{2}(x+5)^{-\frac{1}{2}}dx\)

Now, rewrite the integral, and integrate:

\(\displaystyle 2\int \frac{du}{u}=2\ln \left | u\right |+C\)

The following rule was used for the integration:

\(\displaystyle \int \frac{dx}{x}=\ln \left | x\right |+C\)

Finally, replace u with our original term:

\(\displaystyle 2\ln(\sqrt{x+5})+C\)

Note that the absolute value sign went away, because the square root is always positive.

Example Question #112 : Integral Expressions

Evaluate the following integral:

\(\displaystyle \int (e^x+x\cos(x^2+3))dx\)

Possible Answers:

\(\displaystyle e^x+\ln(x^2+3)+C\)

\(\displaystyle e^x+\sin(x^2+3)+C\)

\(\displaystyle e^x+\frac{1}{2}\cos(x^2+3)+C\)

\(\displaystyle e^x+\frac{1}{2}\sin(x^2+3)+C\)

Correct answer:

\(\displaystyle e^x+\frac{1}{2}\sin(x^2+3)+C\)

Explanation:

To integrate, we must split the integral in two:

\(\displaystyle \int e^xdx+\int (x\cos(x^2+3))dx\)

The first integral is:

\(\displaystyle \int e^xdx=e^x+C\)

and is identical to the rule used to integrate.

The second integral is performed using the following substitution:

\(\displaystyle u=x^2+3, du=2xdx\)

Now, rewrite the integral and integrate:

\(\displaystyle \frac{1}{2}\int \cos(u)du=\frac{1}{2}\sin(u)+C\)

We used the following rule to integrate:

\(\displaystyle \int \cos(x)dx=\sin(x)+C\)

Finally, replace u with the original term:

\(\displaystyle e^x+\frac{1}{2}\sin(x^2+3)+C\)

 

Example Question #113 : Integral Expressions

Evaluate the following integral:

\(\displaystyle \int (15\sec(x)+x^2)dx\)

Possible Answers:

\(\displaystyle 15\tan(x)+\frac{x^3}{3}+C\)

\(\displaystyle 15\ln\left | \sec(x)+\tan(x)\right |+x^3+C\)

\(\displaystyle \ln\left | \sec(x)+\tan(x)\right |+\frac{x^3}{3}+C\)

\(\displaystyle 15\ln\left | \sec(x)+\tan(x)\right |+\frac{x^3}{3}+C\)

Correct answer:

\(\displaystyle 15\ln\left | \sec(x)+\tan(x)\right |+\frac{x^3}{3}+C\)

Explanation:

The integral is equal to
\(\displaystyle 15\ln\left | \sec(x)+\tan(x)\right |+\frac{x^3}{3}+C\)

and was found using the following rules:

\(\displaystyle \int \sec(x)=\ln\left | \sec(x)+\tan(x)\right |+C\)

\(\displaystyle \int x^ndx=\frac{x^{n+1}}{n+1}+C\).

 

Example Question #111 : Writing Equations

Evaluate the following integral:

\(\displaystyle \int (x^2+2\cos(x))dx\)

Possible Answers:

\(\displaystyle \frac{x^3}{3}-2\sin(x)+C\)

\(\displaystyle x^3+2\sin(x)+C\)

\(\displaystyle \frac{x^3}{3}+2\sin(x)+C\)

\(\displaystyle x^3-2\sin(x)+C\)

Correct answer:

\(\displaystyle \frac{x^3}{3}+2\sin(x)+C\)

Explanation:

The integral is equal to

\(\displaystyle \frac{x^3}{3}+2\sin(x)+C\)

and we used the following rules for integration:

\(\displaystyle \int x^n dx=\frac{x^{n+1}}{n+1}+C\)

\(\displaystyle \int \cos(x)dx=\sin(x)+C\)

 

Example Question #115 : Integral Expressions

Evaluate the integral:

\(\displaystyle \int \left(8x^4+\sec^2(x)+\frac{1}{x^2+1}\right)dx\)

Possible Answers:

\(\displaystyle \frac{8}{5}x^5+\tan(x)+\arctan(x)+C\)

\(\displaystyle 8x^5+\tan(x)+\frac{1}{2}\ln(x^2+1)+C\)

\(\displaystyle \frac{8}{5}x^5+\tan(x)+\arccos(x)+C\)

\(\displaystyle 8x^5+\tan(x)+\arctan(x)+C\)

Correct answer:

\(\displaystyle \frac{8}{5}x^5+\tan(x)+\arctan(x)+C\)

Explanation:

The integral was performed using the following rules:

\(\displaystyle \int x^n dx=\frac{x^{n+1}}{n+1}+C\)

\(\displaystyle \int \sec^2(x)dx=\tan(x)+C\)

\(\displaystyle \int \frac{dx}{x^2+1}=\arctan(x)+C\)

Applying the above rules we get the following.

\(\displaystyle \frac{8}{5}x^5+\tan(x)+\arctan(x)+C\)

Example Question #116 : Integral Expressions

Evaluate the following integral:

\(\displaystyle \int xe^{3x^2}dx\)

Possible Answers:

\(\displaystyle \frac{1}{6}e^{2x^2}+C\)

\(\displaystyle \frac{1}{6}e^{3x^2}+C\)

\(\displaystyle e^{3x^2}+C\)

\(\displaystyle \frac{1}{3}e^{3x}+C\)

Correct answer:

\(\displaystyle \frac{1}{6}e^{3x^2}+C\)

Explanation:

To integrate, we must make the following substitution:

\(\displaystyle u=3x^2, du=6xdx\)

Now, rewrite the integral and integrate:

\(\displaystyle \frac{1}{6}\int e^udu=\frac{1}{6}e^u+C\)

The following rule was used to integrate:

\(\displaystyle \int e^xdx=e^x+C\)

Finally, replace u wiht our original term:

\(\displaystyle \frac{1}{6}e^{3x^2}+C\)

Example Question #117 : Integral Expressions

\(\displaystyle \int (e^x+x\cos(x^2))dx\)

Possible Answers:

\(\displaystyle e^x+\frac{1}{2}\cos(x^2)+C\)

\(\displaystyle e^x+\cos(x^2)+C\)

\(\displaystyle e^x+\frac{1}{2}\sin(x^2)+C\)

\(\displaystyle e^x-\cos(x^2)+C\)

Correct answer:

\(\displaystyle e^x+\frac{1}{2}\sin(x^2)+C\)

Explanation:

The integral can be split into two seperate ones:

\(\displaystyle \int e^xdx+\int x\cos(x^2)dx\)

The first integral is simple:

\(\displaystyle \int e^xdx=e^x+C\) 

and is identical to the rule used.

The second integral can be performed using the following substitution:

\(\displaystyle u=x^2, du=2xdx\)

Rewrite and integrate:

\(\displaystyle \frac{1}{2} \int \cos(u)du=\frac{1}{2}\sin(u)+C\)

The following rule was used to integrate:

\(\displaystyle \int \cos(x)dx=\sin(x)+C\)

Finally, replace u with the original term and add the integrals together:

\(\displaystyle e^x+\frac{1}{2}\sin(x^2)+C\)

Example Question #118 : Integral Expressions

Given that the piecewise function \(\displaystyle f(x)=cos(x)\) for \(\displaystyle x\leq0\) and \(\displaystyle f(x)=e^{2x}\) for \(\displaystyle x>0\), find \(\displaystyle \int_{-\frac{\pi }{2}}^{2}f(x)dx\).

Possible Answers:

\(\displaystyle \frac{1+e^2}{2}\)

\(\displaystyle \frac{1-e^2}{2}\)

\(\displaystyle \frac{1-e^4}{2}\)

\(\displaystyle \frac{1+e^4}{2}\)

\(\displaystyle \frac{1+e^4}{4}\)

Correct answer:

\(\displaystyle \frac{1+e^4}{2}\)

Explanation:

Since we have a piecewise function we will need to set up an integral with two parts. One will \(\displaystyle f(x)=cos(x)\) from \(\displaystyle -\frac{\pi}{2}\) to zero and the other, \(\displaystyle f(x)=e^{2x}\) from zero to two.

Setting up the integral and plugging in the bounds looks like,

\(\displaystyle \\ \int_{-\frac{\pi }{2}}^{2}f(x)dx=\int_{-\frac{\pi }{2}}^{0}f(x)dx+\int_{0}^{2}f(x)dx\\ \\=\int_{-\frac{\pi }{2}}^{0}cos(x)dx+\int_{0}^{2}e^{2x}dx\\ \\=sin(x)]\begin{matrix}-\frac{\pi }{2}, \end{matrix}0+\frac{e^{2x}}{2}]\begin{matrix}0, \end{matrix}2\\ \\=[sin(0)-sin(-\frac{\pi }{2})]+[\frac{e^{4}}{2}-\frac{e^0}{2}]\\ \\=[0-(-1)]+[\frac{e^4}{2}-\frac{1}{2}]\\ \\=1-\frac{e^4-1}{2}\\ \\=\frac{2+e^4-1}{2}\\ \\=\frac{1+e^4}{2}\).

Example Question #119 : Writing Equations

Find the general anti-derivative of \(\displaystyle {} x^2 e^x\).

Possible Answers:

\(\displaystyle {} x^2e^x+2xe^x+C\)

\(\displaystyle {} x^2e^x-2xe^x+2e^x+C\)

\(\displaystyle {} x^2e^x+C\)

\(\displaystyle {} \frac{x^3e^x}{3}+C\)

Correct answer:

\(\displaystyle {} x^2e^x-2xe^x+2e^x+C\)

Explanation:

We have a product of two easy functions, so to get our answer we need to use integration by parts. The general formula for this is:

\(\displaystyle \int u dv = uv- \int v du\).

Choose \(\displaystyle u=x^2\) and \(\displaystyle dv=e^x dx\). Then \(\displaystyle du=2xdx\) and \(\displaystyle v=e^x.\) 

So integration by parts tells us that our antiderivative equals

 \(\displaystyle {} x^2e^x-\int 2xe^x dx.\)

Now we must apply integration by parts again, because we still have an integral of a product of two functions. Choose \(\displaystyle u=2x\) and \(\displaystyle dv=e^x dx\) again, so \(\displaystyle du=2dx\) and \(\displaystyle v=e^x\).

Then we have 

\(\displaystyle {} \int 2xe^x dx = 2xe^x-\int2e^x dx.\)

But of course, \(\displaystyle 2e^x\) is its own antiderivative, because we can pull out constants and \(\displaystyle e^x\) is its own anti-derivative.

So combining these two results we get our final answer:

\(\displaystyle {} \int x^2e^x dx = x^2e^x-2xe^x+2e^x+C.\)

Example Question #119 : Integral Expressions

Write the integral expression for position \(\displaystyle p(t)\) given acceleration \(\displaystyle a(t)\)

Possible Answers:

\(\displaystyle p(t)=\int \left[\int a(t)dt\right]dt\)

\(\displaystyle p(t)=\frac{\mathrm{d} }\left{\mathrm{d} t}[\int a(t)dt\right]\)

\(\displaystyle p(t)=\frac{\mathrm{d^2}a(t) }{\mathrm{d} t^2}\)

\(\displaystyle p(t)=\frac{\mathrm{d^2} }{\mathrm{d} t^2}\int \left[\int a(t)dt\right]dt\)

Correct answer:

\(\displaystyle p(t)=\int \left[\int a(t)dt\right]dt\)

Explanation:

The indefinite integral of acceleration is velocity. The indefinite integral of velocity is position. We can write this as: 

\(\displaystyle v(t)=\int a(t)dt\), where \(\displaystyle a(t)\) is acceleration and \(\displaystyle v(t)\) is velocity

\(\displaystyle p(t)=\int v(t)dt\), where \(\displaystyle p(t)\) is position

\(\displaystyle p(t)=\int \left[\int a(t)dt\right]dt\)

 

Learning Tools by Varsity Tutors