Biochemistry : Citric Acid Cycle Enzymes

Study concepts, example questions & explanations for Biochemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Citric Acid Cycle

Which of the following enzymes catalyzes a reaction within the citric acid cycle?

Possible Answers:

Phosphoglycerate kinase

Isocitrate dehydrogenase

Glyceraldehyde-3-phosphate dehydrogenase

Pyruvate kinase

Enolase

Correct answer:

Isocitrate dehydrogenase

Explanation:

The only enzyme listed in the answer choices that catalyzes a reaction within the citric acid cycle is isocitrate dehydrogenase, as it catalyzes the formation of alpha-ketoglutarate, carbon dioxide, NADH, and a proton, from isocitrate and .

Each of the other enzymes listed do not catalyze reactions within the citric acid cycle, but rather they catalyze reactions within glycolysis, as follows:

Pyruvate kinase catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP.

Glyceraldehyde-3-phosphate dehydrogenase catalyzes the conversion of glyceraldehyde-3-phosphate, , and inorganic phosphate to 1,3-bisphosphoglycerate, NADH, and a proton.

Phosphoglycerate kinase catalyzes the conversion of 1,3-bisphosphoglycerate and ADP to 3-phosphoglycerate and ATP.

Enolase catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate.

Example Question #11 : Citric Acid Cycle Enzymes

Which of the following citric acid cycle enzymes catalyzes a reaction that results in the production of a molecule of ?

Possible Answers:

Pyruvate kinase

Aconitase

Isocitrate dehydrogenase

Succinate dehydrogenase

Fumarase

Correct answer:

Succinate dehydrogenase

Explanation:

The only enzyme listed that participates in the citric acid cycle and catalyzes a step producing  is succinate dehydrogenase. Succinate dehydrogenase catalyzes the conversion of succinate and FAD to fumarate and

Pyruvate kinase is incorrect as it neither participates in the citric acid cycle (it is part of glycolysis), nor catalyzes a reaction that produces

Isocitrate dehydrogenase catalyzes the conversion of isocitrate and  to alpha-ketoglutarate, NADH, , and CO2, but not .

Fumarase catalyzes the conversion of fumarate and  to malate, but not .

Aconitase catalyzes the conversion of cis-aconitate and  to isocitrate, but not

Example Question #12 : Citric Acid Cycle

Which of the following enzymes catalyzes the citric acid cycle step that directly produces succinyl-CoA?

Possible Answers:

Succinyl-CoA synthetase

Succinate dehydrogenase

Alpha-ketoglutarate dehydrogenase

Fumarase

Isocitrate dehydrogenase

Correct answer:

Alpha-ketoglutarate dehydrogenase

Explanation:

The citric acid cycle enzyme that catalyzes the reaction directly responsible for the production of succinyl-CoA is alpha-ketoglutarate dehydrogenase. Alpha-ketoglutarate dehydrogenase catalyzes the conversion of alpha-ketoglutarate, , and CoA-SH to succinyl-CoA, NADH, , and

Each of the other enzymes listed are enzymes that participate in the citric acid cycle, but not in the step the directly produces succinyl-CoA. Their general roles are as follows:

Succinyl-CoA synthetase catalyzes the conversion of succinyl-CoA to succinate.

Succinate dehydrogenase catalyzes the conversion of succinate to fumarate.

Isocitrate dehydrogenase catalyzes the conversion of isocitrate to alpha-ketoglutarate.

Fumarase catalyzes the conversion of fumarate to malate.

Example Question #13 : Citric Acid Cycle

Which of the following statements regarding the function of the enzyme, succinyl-CoA synthetase, is a true statement?

Possible Answers:

Succinyl-CoA synthetase catalyzes the reaction responsible for the rate-limiting step of glycolysis.

Succinyl-CoA synthetase directly catalyzes a citric acid cycle reaction that produces .

Succinyl-CoA synthetase is produced by the reaction catalyzed by alpha-ketoglutarate dehydrogenase. 

Succinyl-CoA synthetase catalyzes the reaction responsible for the formation of succinyl-CoA.

Succinyl-CoA synthetase catalyzes the reaction responsible for the formation of succinate.

Correct answer:

Succinyl-CoA synthetase catalyzes the reaction responsible for the formation of succinate.

Explanation:

The only correct statement within the answer choices is that succinyl-CoA synthetase catalyzes the reaction responsible for the formation of succinate. In this reaction, the citric acid cycle enzyme, succinyl-CoA synthetase, catalyzes the conversion of succinyl-CoA, GDP (or ADP) and inorganic phosphate to succinate, CoA-SH, and GTP (or ATP). 

The incorrect answer choices are explained below:

"Succinyl-CoA synthetase is produced by the reaction catalyzed by alpha-ketoglutarate dehydrogenase."

This is incorrect because it is succinyl-CoA that is produced by the reaction catalyzed by alpha-ketoglutarate dehydrogenase. Succinyl-CoA synthetase, the enzyme, is not produced by this reaction.

"Succinyl-CoA synthetase catalyzes the reaction responsible for the rate-limiting step of glycolysis."

Succinyl-CoA synthetase does not participate in glycolysis; it participates in the citric acid cycle. Furthermore, even in the citric acid cycle, it does not catalyze the reaction responsible for the rate-limiting step of the citric acid cycle.

"Succinyl-CoA synthetase catalyzes the reaction responsible for the formation of succinyl-CoA."

Alpha-ketoglutarate dehydrogenase catalyzes the reaction responsible for the formation of succinyl-CoA. Succinyl-CoA synthetase catalyzes the reaction responsible for the conversion of succinyl-CoA to succinate.

"Succinyl-CoA synthetase directly catalyzes a citric acid cycle reaction that produces ."

Succinate dehydrogenase directly catalyzes a citric acid cycle reaction that produces , not succinyl-CoA synthetase.

Example Question #11 : Citric Acid Cycle

Which of the following enzymes catalyzes the rate-limiting step of the citric acid cycle?

Possible Answers:

Phosphofructokinase-1 (PFK-1)

Pyruvate kinase

Isocitrate dehydrogenase

Succinyl-CoA synthetase

Fructose 1,6-bisphosphatase 

Correct answer:

Isocitrate dehydrogenase

Explanation:

The rate-limiting step of the citric acid cycle is catalyzed by the enzyme, isocitrate dehydrogenase. Isocitrate dehydrogenase catalyzes the conversion of isocitrate and  to alpha-ketoglutarate, NADH, a proton, and a molecule of carbon dioxide. 

Phosphofructokinase-1 (PFK-1) is incorrect, as it catalyzes the rate-limiting step of glycolysis, not the citric acid cycle.

Fructose 1,6-bisphosphatase is incorrect, as it catalyzes the rate-limiting step of gluconeogenesis, not the citric acid cycle.

Succinyl-CoA synthetase is incorrect, as it catalyzes a reaction within the citric acid cycle that is not the rate-limiting step.

Pyruvate kinase is incorrect as the reaction that it catalyzes is neither within the citric acid cycle, nor a rate-limiting step.

Learning Tools by Varsity Tutors