AP Physics 2 : Circuit Power

Study concepts, example questions & explanations for AP Physics 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Circuit Power

Consider the circuit:

Circuit_1

What is the rate of power consumption in the circuit if every resistor has a resistance of \displaystyle 3\Omega?

Possible Answers:

\displaystyle 21 W

\displaystyle 24 W

\displaystyle 15 W

\displaystyle 18W

\displaystyle 12 W

Correct answer:

\displaystyle 18W

Explanation:

To calculate the power consumption of the circuit, we need to first reduce it to an equivalent circuit with a single resistor. Since each resistor has the same resistance, this solution will keep resistance calculations as multiples of \displaystyle R until the circuit is fully reduced.

Start with the two branches in parallel. We can condense R3 and R4, then solve for the total resistance of R2, R3, and R4.

\displaystyle R_{34}=R+R=2R

\displaystyle \frac{1}{R_{eq}}=\sum\frac{1}{R} = \frac{1}{R_2}+ \frac{1}{R_{34}}=\frac{1}{R}+\frac{1}{2R} = \frac{3}{2R}

\displaystyle R_{eq} = \frac{2}{3}R

The equivalent circuit now has three resistors in series (R1, Req, and R5), so we can simply add them all up:

\displaystyle R_{tot} = R+\frac{2}{3}R+R=\frac{8}{3}R

Plug in the value for R:

\displaystyle R_{tot}=\frac{8}{3}R=\frac{8}{3}(3\Omega)=8\Omega

Now we can use the equation for power:

\displaystyle P = IV

Substituting in Ohm's law for current, we get:
\displaystyle P = \frac{V^2}{R} = \frac{(12V)^2}{8\Omega} = 18W

Example Question #1 : Circuit Power

You have 4 resistors, \displaystyle A, \displaystyle B, \displaystyle C, and \displaystyle D, set up like this:

4resistorcircuit

Their resistance are as follows:

\displaystyle \begin{align*} A&=1\Omega \\ B&=3\Omega \\ C&=4\Omega \\ D&= 2\Omega \end{align*}

If the battery has 8V, what is the total power dissipated through the resistors?

Possible Answers:

\displaystyle 4W

\displaystyle 12W

\displaystyle 20W

\displaystyle 8W

\displaystyle 16W

Correct answer:

\displaystyle 16W

Explanation:

The equation for power is

\displaystyle P=VI

In order to get the power, we need the current. To find the current, we need to get the total resistance, and use Ohm's Law (\displaystyle V = IR).

To find the total resistance, remember the equations for adding resistors is this:

\displaystyle (Series)\ R_{tot}&=R_1+R_2+...+R_n

\displaystyle (Parallel)\ \frac{1}{R_{tot}}&=\frac{1}{R_1}+\frac{1}{R_2}=...=\frac{1}{R_n}

Resistors \displaystyle A and \displaystyle B are in series, resistors \displaystyle AB and \displaystyle C are in parallel, and resistors \displaystyle ABC and \displaystyle D are in series.

\displaystyle R_{AB}&=1+3

\displaystyle R_{AB}= 4

\displaystyle R_{ABC}&=(\frac{1}{R_{AB}}+\frac{1}{R_C})^{-1}

\displaystyle R_{ABC}= (\frac{1}{4}+\frac{1}{4})^{-1}

\displaystyle R_{ABC}= 2

\displaystyle R_{total}&=R_{ABC}+R_{D}

\displaystyle R_{total}= 2+2

\displaystyle R_{total}= 4

Now, we can find the current.

\displaystyle I&=\frac{V}{R}

\displaystyle I=\frac{8}{4}

\displaystyle I= 2

Finally, we can find the power.

\displaystyle P&=VI

\displaystyle P=(8)(2)

\displaystyle P= 16

Therefore, the power is 16W (watts).

Example Question #2 : Circuit Power

Physics2set1q6

Calculate the power consumed across resistor \displaystyle R2.

\displaystyle I_{1}=2A

\displaystyle I_{2}=1A

\displaystyle R_{1}=4\Omega

\displaystyle R_{2}=3\Omega

\displaystyle C_{1}=2F

Possible Answers:

\displaystyle 2W

\displaystyle 3 W

\displaystyle 4W

\displaystyle 10W

\displaystyle 5W

Correct answer:

\displaystyle 3 W

Explanation:

Physics2set1q6

\displaystyle I_{1}=2A

\displaystyle I_{2}=1A

\displaystyle R_{1}=4\Omega

\displaystyle R_{2}=3\Omega

\displaystyle C_{1}=2F

To calculate power, we need two of the following three quantities: voltage, current, and resistance.

In this case, since we are lacking the voltage, let's try to find the current.

We can use Kirchoff's junction law to calculate current \displaystyle I3.

The current coming into the junction = the current coming out of the junction.

Let's take a look at the central junction to the right of resistor \displaystyle R1.

\displaystyle I_{1}=I_{2}+I_{3}

\displaystyle 2=I_{3}+1

\displaystyle I_{3}=1

Now that we know \displaystyle I and \displaystyle R, we can calculate power across the resistor.

\displaystyle P={I^2}R=3W

Example Question #2 : Circuit Power

Physics2set1q4aPhysics2set1q4b

Elements A-D represent light bulbs.

Which of the following is true about these two circuits? Assume voltage sources have the same value and all the light bulbs are all identical.

Possible Answers:

Bulb A will be as bright as bulb C, but bulbs B and D will have a different brightness.

Bulbs A and B have different brightnesses.

Bulbs C and D have different brightnesses.

Bulbs A and B will be brighter than bulbs C and D.

All bulbs will have the same brightness.

Correct answer:

Bulbs A and B will be brighter than bulbs C and D.

Explanation:

Since bulbs A and B are in parallel, they will have the same voltage, and since the bulbs are identical in resistance, they will have the same current running through them and will be just as bright. 

Let's say the voltage source as a value of \displaystyle V and each bulb has a resistance of \displaystyle R.

The current going through bulbs A and B is \displaystyle \frac{V}{R}.

However, the current going through bulbs C and D is \displaystyle \frac{V}{2R}.

The current going through bulbs C and D is half as much as the other two, so their brightness will be less.

So, bulbs A and B will be brigher than bulbs C and D.

Example Question #4 : Circuit Power

Photo 4 1

\displaystyle R_A=2\Omega

\displaystyle R_B=4\Omega

\displaystyle R_C=6\Omega

If the circuit above is connected to a \displaystyle 4V battery, what is the total power dissipated by the circuit?

Possible Answers:

\displaystyle 14W

\displaystyle 10W

\displaystyle \frac{28}{11}W

\displaystyle 18W

\displaystyle \frac{8}{7}W

Correct answer:

\displaystyle 14W

Explanation:

The equation for power dissipated in a circuit is 

\displaystyle P=IV

The three resistors are in parallel with each other, so the total resistance is 

\displaystyle (R_{tot})^{-1}=\left(\frac{1}{R_A}+\frac{1}{R_B}+\frac{1}{R_C}\right)^{-1}

\displaystyle (R_{tot})^{-1}=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)^{-1}

\displaystyle R_{tot}= \frac{8}{7}\Omega

Use Ohm's law to find current.

\displaystyle I&=\frac{V}{R}

\displaystyle I=\frac{4}{\frac{8}{7}}

\displaystyle I= 3.5A

Finally, solve for power.

\displaystyle P=IV

\displaystyle P=(4)(3.5)

\displaystyle P= 14W

Example Question #3 : Circuit Power

Combined circuit 

\displaystyle V_1 = V_2 = 4.5V

\displaystyle R_1=R_3=R_4= 3\Omega

\displaystyle R_2=6\Omega

In the circuit above, find the power being dissipaited by \displaystyle R_3.

Possible Answers:

\displaystyle \frac{3}{4}W

None of these

\displaystyle \frac{9}{8}W

\displaystyle \frac{243}{64}W

\displaystyle 9W

Correct answer:

\displaystyle \frac{243}{64}W

Explanation:

First, find the total resistance of the circuit.

\displaystyle R_1 and \displaystyle R_2 are in parallel, so we find their equivalent resistance by using the following formula:

\displaystyle \frac{1}{R_{1}}+\frac{1}R_{2}=\frac{1}{R_{1+2}}

\displaystyle \frac{1}{3}+\frac{1}{6}=\frac{1}{R_{1+2}}

\displaystyle \frac{3}{6}=\frac{1}{R_{1+2}}}

\displaystyle R_{1+2}=2\Omega

Next, add the series resistors together.

\displaystyle R_{1+2}+R_3+R_4=R_{total}

\displaystyle R_{total}=8\Omega

Use Ohm's law to find the current in the system.

\displaystyle V=IR

\displaystyle (V_1+V_2)=IR

\displaystyle 9V=I\cdot 8\Omega

\displaystyle I=\frac{9}{8}A

Because it is not in parallel, the total current in the circuit is equal to the current in \displaystyle R_3.

The equation for power is as follows:

\displaystyle P=IV=I^2R

\displaystyle P=\left(\frac{9}{8}A \right )^2\cdot3\Omega

\displaystyle P=\frac{243}{64}W

 

Example Question #2 : Circuit Power

Combined circuit

\displaystyle V_1 = V_2 = 4.5V

\displaystyle R_1=R_3=R_4= 3\Omega

\displaystyle R_2=6\Omega

In the circuit above, find the power being dissipated by \displaystyle R_2.

Possible Answers:

\displaystyle 9W

\displaystyle \frac{9}{8}W

\displaystyle \frac{27}{32}W

\displaystyle \frac{27}{64}W

None of these

Correct answer:

\displaystyle \frac{27}{32}W

Explanation:

First, find the total resistance of the circuit.

\displaystyle R_1 and \displaystyle R_2 are in parallel, so we find their equivalent resistance by using the following formula:

\displaystyle \frac{1}{R_{1}}+\frac{1}R_{2}=\frac{1}{R_{1+2}}

\displaystyle \frac{1}{3}+\frac{1}{6}=\frac{1}{R_{1+2}}

\displaystyle \frac{3}{6}=\frac{1}{R_{1+2}}}

\displaystyle R_{1+2}=2\Omega

Next, add the series resistors together.

\displaystyle R_{1+2}+R_3+R_4=R_{total}

\displaystyle R_{total}=8\Omega

Use Ohm's law to find the current in the system.

\displaystyle V=IR

\displaystyle (V_1+V_2)=IR

\displaystyle 9V=I\cdot 8\Omega

\displaystyle I=\frac{9}{8}A

The current through \displaystyle R_1 and \displaystyle R_2 needs to add up to the total current, since they are in parallel.

\displaystyle I_1 + I_2 =I_{total}

\displaystyle I_1 + I_2 =\frac{9}{8}A

Also, the voltage drop across them need to be equal, since they are in parallel.

\displaystyle V_1=V_2

\displaystyle I_1R_1=I_2R_2

\displaystyle I_1\cdot3\Omega=I_2\cdot 6\Omega

 Set up a system of equations.

\displaystyle I_1\cdot3\Omega=I_2\cdot 6\Omega

\displaystyle I_1 + I_2 =\frac{9}{8}A 

Solve. 

\displaystyle I_2=.5I_1

\displaystyle 3I_2=\frac{9}{8}A

\displaystyle I_2=\frac{3}{8}A

The equation for power is as follows:

\displaystyle P=IV=I^2R

\displaystyle P=\left(\frac{3}{8}A \right )^2\cdot6\Omega

\displaystyle P=\frac{27}{32}W

Example Question #2 : Circuit Power

Combined circuit

\displaystyle V_1 = V_2 = 4.5V

\displaystyle R_1=R_3=R_4= 3\Omega

\displaystyle R_2=6\Omega

In the circuit above, find the power being dissipated by \displaystyle R_1.

Possible Answers:

\displaystyle \frac{9}{8}W

\displaystyle \frac{3}{4}W

None of these

\displaystyle 9W

\displaystyle \frac{27}{16}W

Correct answer:

\displaystyle \frac{27}{16}W

Explanation:

First, find the total resistance of the circuit.

\displaystyle R_1 and \displaystyle R_2 are in parallel, so we find their equivalent resistance by using the following formula:

\displaystyle \frac{1}{R_{1}}+\frac{1}R_{2}=\frac{1}{R_{1+2}}

\displaystyle \frac{1}{3}+\frac{1}{6}=\frac{1}{R_{1+2}}

\displaystyle \frac{3}{6}=\frac{1}{R_{1+2}}}

\displaystyle R_{1+2}=2\Omega

Next, add the series resistors together.

\displaystyle R_{1+2}+R_3+R_4=R_{total}

\displaystyle R_{total}=8\Omega

Use Ohm's law to find the current in the system.

\displaystyle V=IR

\displaystyle (V_1+V_2)=IR

\displaystyle 9V=I\cdot 8\Omega

\displaystyle I=\frac{9}{8}A

The current through \displaystyle R_1 and \displaystyle R_2 needs to add up to the total current, since they are in parallel.

\displaystyle I_1 + I_2 =I_{total}

\displaystyle I_1 + I_2 =\frac{9}{8}A

Also, the voltage drop across them need to be equal, since they are in parallel.

\displaystyle V_1=V_2

\displaystyle I_1R_1=I_2R_2

\displaystyle I_1\cdot3\Omega=I_2\cdot 6\Omega

Set up a system of equations.

\displaystyle I_1\cdot3\Omega=I_2\cdot 6\Omega

\displaystyle I_1 + I_2 =\frac{9}{8}A

Solve.

\displaystyle I_2=.5I_1

\displaystyle 1.5I_1=\frac{9}{8}A

\displaystyle I_1=\frac{3}{4}A

The equation for power is as follows:

\displaystyle P=IV=I^2R

 \displaystyle P=\left(\frac{3}{4}A \right )^2\cdot3\Omega

 \displaystyle P=\frac{27}{16}W

Example Question #2 : Circuit Power

Three parallel resistors

\displaystyle R_1=R_4=R_5=2\Omega

\displaystyle R_2=5\Omega

\displaystyle R_3=6\Omega

What can be said about the power being dissipated by \displaystyle R_4 and \displaystyle R_5?

Possible Answers:

\displaystyle R_4 will dissipate more power than \displaystyle R_5

Their values will be equal

None of these

\displaystyle R_5 will dissipate more power than \displaystyle R_4

It is impossible to tell

Correct answer:

Their values will be equal

Explanation:

\displaystyle R_4 and \displaystyle R_5 are in series with each other, therefore, they will have the same current values. They also have the same resistance values. Thus, they will have the same power dissipated, as \displaystyle P=I^2R.

Example Question #4 : Circuit Power

3 sets of parallel resistors

\displaystyle R_1=R_4=1\Omega

\displaystyle R_2=R_5=2\Omega

\displaystyle R_3=R_6= 3\Omega

\displaystyle V_1=V_2=V_3=3 V

Calculate the power being dissipated by \displaystyle R_3

Possible Answers:

\displaystyle 9.15 watts

None of these

\displaystyle 2.21 watts

\displaystyle 37.5 watts

\displaystyle 1.55 watts

Correct answer:

\displaystyle 2.21 watts

Explanation:

The first step is to find the total resistance of the circuit.

In order to find the total resistance of the circuit, it is required to combine all of the parallel resistors first, then add them together as resistors in series.

Combine \displaystyle R_1 with \displaystyle R_2\displaystyle R_3 with \displaystyle R_4\displaystyle R_5 with \displaystyle R_6.

\displaystyle \frac{1}{R_1}+\frac{1}{R_2}=\frac{1}{R_{1,2}}

 \displaystyle \frac{1}{R_3}+\frac{1}{R_4}=\frac{1}{R_{3,4}}

\displaystyle \frac{1}{R_5}+\frac{1}{R_6}=\frac{1}{R_{5,6}}

Then, combining \displaystyle R_{1,2} with \displaystyle R_{3,4} and \displaystyle R_{5,6}:

\displaystyle R_{1,2}+R_{3,4}+R_{5,6}=R_{Total}

\displaystyle R_{1,2}=.667 \Omega

\displaystyle R_{3,4}=.75 \Omega

\displaystyle R_{5,6}=1.2 \Omega

\displaystyle R_{Total}= 2.62\Omega

Ohms is used law to determine the total current of the circuit

\displaystyle V=IR

\displaystyle \frac{V}{R}=I

Combing all voltage sources for the total voltage.

 \displaystyle V_1+V_2+V_3=9 Volts

Plugging in given values,

 \displaystyle \frac{9V}{2.62\Omega}=I

 \displaystyle I=3.43 amps

We know that the voltage drop across parallel resistors must be the same, so:

\displaystyle V_{R3}=V_{R4}

Using ohms law:

 \displaystyle I_3R_3=I_4R_4

It is also true that:

\displaystyle I_3+I_4=I_{Total}

Using Subsitution:

\displaystyle I_3(1+\frac{R_3}{R_4})=I_{Total}

Solving for \displaystyle I_3:

\displaystyle \frac{I_{Total}}{(1+\frac{R_3}{R_4})}=I_3

 Plugging in values:

\displaystyle \frac{3.43}{(1+\frac{3}{1})}=I_3

 \displaystyle .858 amps=I_3

Using the definition of electric power, where \displaystyle I is current and \displaystyle R is the resistance of the component in question.

\displaystyle P=I^2R

\displaystyle P=.858^2*3 

\displaystyle P= 2.21 watts

Learning Tools by Varsity Tutors