All AP Calculus BC Resources
Example Questions
Example Question #2 : Derivatives Of Polar Form
Find the first derivative of the polar function
.
In general, the dervative of a function in polar coordinates can be written as
.
Therefore, we need to find , and then substitute into the derivative formula.
To find , the chain rule,
, is necessary.
We also need to know that
.
Therefore,
.
Substituting into the derivative formula yields
Example Question #441 : Ap Calculus Bc
What is the derivative of ?
In order to find the derivative of a polar equation , we must first find the derivative of with respect to as follows:
We can then swap the given values of and into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that . Swapping this into the denominator, we get:
Example Question #2 : Derivatives Of Parametric, Polar, And Vector Functions
Given that . We define its gradient as :
Let be given by:
What is the gradient of ?
By definition, to find the gradient vector , we will have to find the gradient components. We know that the gradient components are that partial derivatives.
We know that in our case we have :
To see this, fix all other variables and assume that you have only as the only variable.
Now we apply the given defintion , i.e,
with :
this gives us the solution .
Example Question #3 : Derivatives Of Parametric, Polar, And Vector Functions
Let .
We define the gradient of as:
Let .
Find the vector gradient.
We note first that :
Using the Chain Rule where is the only variable here.
Using the Chain Rule where is the only variable here.
Continuing in this fashion we have:
Again using the Chain Rule and assuming that is the variable and all the others are constant.
Now applying the given definition of the gradient we have the required result.
Example Question #1 : Derivatives Of Vectors
Let
What is the derivative of ?
To find the derivative of this vector, all we need to do is to differentiate each component with respect to t.
Use the Power Rule and the Chain Rule when differentiating.
is the derivative of the first component.
of the second component.
is the derivative of the last component . we obtain then:
Example Question #442 : Ap Calculus Bc
In general:
If ,
then
Derivative rules that will be needed here:
- Taking a derivative on a term, or using the power rule, can be done by doing the following:
- When taking derivatives of sums, evaluate with the sum rule which states that the derivative of the sum is the same as the sum of the derivative of each term:
- Special rule when differentiating an exponential function: , where k is a constant.
In this problem,
Put it all together to get
Example Question #174 : Derivatives
Given the parametric curve
,
Evaluate when .
To find , we can use the formula .
.
And .
Hence .
Plugging in , we get
Example Question #11 : Derivatives Of Parametric, Polar, And Vector Functions
Find of the following function:
,
To find the derivative of the parametric function, we must use the following:
So, we must take the derivative of each component with respect to t:
The derivative was found using the following rules:
, ,
This derivative was found using the following rule:
Dividing the two and factoring, we get
Example Question #73 : Computation Of Derivatives
Find , where
To find the derivative of x with respect to t, we must differentiate both sides of the parametric equation with respect to t:
The derivatives were found using the following rules:
,
Note that the chain rule was used when taking the derivative of .
Solving, we get
Example Question #181 : Derivatives
A particle moves around the xy plane such that its position as a function of time is given by the parametric function:
.
What is the slope, , of the particle's trajectory when ?
Evaluate the slope as
.
We have
and
so
Evaluating this when gives
.
Remark: This curve is one example from family of curves called Lissajous figures, which can be observed on oscilloscopes.