AP Calculus AB : Derivatives

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #56 : Calculus I — Derivatives

What is the second derivative of ?

Possible Answers:

Correct answer:

Explanation:

To get the second derivative, first we need to find the first derivative.

To do that, we can use the power rule. That means we lower the exponent of the variable by one and multiply the variable by that original exponent.

Remember that anything to the zero power is one.

Now we do the same process again, but using  as our expression:

Notice that , as anything times zero will be zero.

Anything to the zero power is one.

Example Question #57 : Calculus I — Derivatives

What is the second derivative of ?

Possible Answers:

Undefined

Correct answer:

Explanation:

To get the second derivative, first we need to find the first derivative.

To do that, we can use the power rule. That means we lower the exponent of the variable by one and multiply the variable by that original exponent.

We're going to treat  as , as anything to the zero power is one.

That means this problem will look like this:

Notice that  as anything times zero will be zero.

Remember, anything to the zero power is one.

Now to get the second derivative we repeat those steps, but instead of using , we use .

Notice that  as anything times zero will be zero.

Example Question #58 : Calculus I — Derivatives

What is the second derivative of ?

Possible Answers:

Correct answer:

Explanation:

To get the second derivative, first we need to find the first derivative.

To do that, we can use the power rule. That means we lower the exponent of the variable by one and multiply the variable by that original exponent.

We're going to treat  as , as anything to the zero power is one.

Notice that , as anything times zero is zero.

Now we repeat the process using  as the expression.

Just like before, we're going to treat  as .

Example Question #51 : Derivatives

If , what is ?

Possible Answers:

Correct answer:

Explanation:

The question is asking us for the second derivative of the equation. First, we need to find the first derivative.

To do that, we can use the power rule. To use the power rule, we lower the exponent on the variable and multiply by that exponent.

We're going to treat  as  since anything to the zero power is one.

Notice that  since anything times zero is zero.

Now we do the exact same process but using  as our expression.

As stated earlier, anything to the zero power is one.

Example Question #52 : Derivatives

What is the second derivative of ?

Possible Answers:

Undefined

Correct answer:

Explanation:

To find the second derivative, first we need to find the first derivative.

To do that, we can use the power rule. To use the power rule, we lower the exponent on the variable and multiply by that exponent.

We're going to treat  as  since anything to the zero power is one.

Notice that  since anything times zero is zero.

That leaves us with .

Simplify.

As stated earlier, anything to the zero power is one, leaving us with:

Now we can repeat the process using  or  as our equation.

As pointed out before, anything times zero is zero, meaning that .

 

Example Question #53 : Derivatives

What is the second derivative of ?

Possible Answers:

Correct answer:

Explanation:

To find the second derivative, first we need to find the first derivative.

To do that, we can use the power rule. To use the power rule, we lower the exponent on the variable and multiply by that exponent.

We're going to treat  as  since anything to the zero power is one.

Notice that  since anything times zero is zero.

Just like it was mentioned earlier, anything to the zero power is one.

Now we repeat the process using  as our expression.

Like before, anything times zero is zero.

Anything to the zero power is one.

Example Question #301 : Computation Of The Derivative

Define .

What is  ?

Possible Answers:

Correct answer:

Explanation:

Take the derivative  of , then take the derivative of .

 

 

Example Question #1 : Finding Derivative At A Point

Find  if the function  is given by

Possible Answers:

Correct answer:

Explanation:

To find the derivative at , we first take the derivative of . By the derivative rule for logarithms,

Plugging in , we get

Example Question #1 : Finding Derivatives

Find the derivative of the following function at the point .

Possible Answers:

Correct answer:

Explanation:

Use the power rule on each term of the polynomial to get the derivative,

Now we plug in

Example Question #2 : Finding Derivatives

Let . What is ?

Possible Answers:

Correct answer:

Explanation:

We need to find the first derivative of f(x). This will require us to apply both the Product and Chain Rules. When we apply the Product Rule, we obtain:

In order to find the derivative of , we will need to employ the Chain Rule.

 

 We can factor out a 2x to make this a little nicer to look at.

Now we must evaluate the derivative when x = .

The answer is .

 

 

Learning Tools by Varsity Tutors