All ACT Reading Resources
Example Questions
Example Question #156 : Sat Critical Reading
Natural Science: Darwin and his influence by Joseph Ritchie
In this passage, “selection” refers to traits that are selected for and passed on to later generations, and “species” refers to organisms that share a common ancestor and can produce viable offspring with one another.
Early in the nineteenth century, scientists sought to understand the differences in the earth’s flora and fauna from their archeological ancestors. The prevailing view at the time was that the differences between current and previous species were unremarkable deviations from their Platonic ideal forms. This theory hinged upon the ideals of the religious-based “created kinds” theory, which state that individuals of today are products of the organisms that were present at the earth’s creation, the result of an intelligent designer. Furthermore, these individuals believed that the differences between organisms could be explained by unseen geological and astrological forces acting on organisms slowly, throughout time. Other scientists also believed that individuals had the ability to change within their lifetimes and pass on traits to their offspring efficiently and quickly through a single generation.
Charles Darwin and other biologists, such as Alfred Wallace, were not greatly influenced by these views and hypotheses. Their propositions stated that species evolve over many generations, due to the selective pressures of their given environments. This evolution could result in the generation of divergent traits, as well as speciation and separation from the original ancestral species. The concept that organisms were not finite or present since creation was very controversial to the scientists of the period. Some saw such an idea as unsupportable, while others perceived it as heretical and fanatical.
Darwin set out to find support for his theory through his work, On the Origins of Species by Means of Natural Selection. He was influenced by archeological discoveries of species, which appeared to have vastly different physiological appearances from present-day organisms. Darwin decided to sail around the world on a Royal Navy ship named the HMS Beagle. During his travels, he was taken to the Pacific islands of the Galapagos archipelago. The volcanic islands followed a patterned distribution on either side of the Equator. The landscapes of each island varied, with different observable flora and fauna. Through scientific observations, Darwin noticed subtle variations of finches on different islands. Some finches had large hard beaks, while others had slender beaks. Beaks were differentiated from island to island. After careful study, Darwin noticed that the beaks seemed to match the food source on each island. The large beaks were specialized for breaking open hard-shelled nuts, while the slender beaks were specialized for eating certain fruits that were abundant. Darwin hypothesized that an ancestral species of finch landed on the islands, and that over generations they became adapted to the locally abundant food sources.
Darwin compiled multiple instances of natural selection and incorporated discoveries made by archeologists and physiologists. He surmised that species evolve over time due to the selective pressures of their respective habitats. These events occur slowly over many generations. Each species selects for advantageous traits among its members. Over time, traits selected as advantageous by environmental pressures and stressors become commonplace in the species. This niche-forming process specializes species by rewarding those with traits most suitable for reproductive success. These traits may progress into speciation of the original species, which results in the eventual development of an entirely new species. Darwin’s theory was met with opposition at the time of its publication, and the theory of evolution remains a controversial topic in several arenas of debate.
The last paragraph suggests which of the following statements?
Darwin's theory was readily accepted because it was supported by other scientific disciplines.
Darwin's theory was not understood by the scientists of his time but has since been proven.
Darwin's theory was a controversial topic at the time and remains to stir debate.
Darwin's research was the focus of debate for jealous researchers.
Darwin's theory was a controversial topic at the time and remains to stir debate.
Darwin's theory was a controversial topic at the time and remains to stir debate.
The last paragraph suggests that Darwin's research produced discussion and debate, both at the time of its introduction and today. The other answers are incorrect because the passage makes no reference to jealous researchers, the immediate acceptance of his work, or research that proved its findings.
Example Question #1 : Identifying And Analyzing Important Details In Natural Science Passages
Adapted from The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom by Charles Darwin (1876)
As it is impossible to exclude such minute pollen-carrying insects as Thrips, flowers which it was intended to fertilise with their own pollen may sometimes have been afterwards crossed with pollen brought by these insects from another flower on the same plant; but as we shall hereafter see, a cross of this kind does not produce any effect, or at most only a slight one. When two or more plants were placed near one another under the same net, as was often done, there is some real though not great danger of the flowers which were believed to be self-fertilised being afterwards crossed with pollen brought by Thrips from a distinct plant. I have said that the danger is not great because I have often found that plants which are self-sterile, unless aided by insects, remained sterile when several plants of the same species were placed under the same net. If, however, the flowers which had been presumably self-fertilised by me were in any case afterwards crossed by Thrips with pollen brought from a distinct plant, crossed seedlings would have been included amongst the self-fertilised; but it should be especially observed that this occurrence would tend to diminish and not to increase any superiority in average height, fertility, etc., of the crossed over the self-fertilised plants.
As the flowers which were crossed were never castrated, it is probable or even almost certain that I sometimes failed to cross-fertilise them effectually, and that they were afterwards spontaneously self-fertilised. This would have been most likely to occur with dichogamous species, for without much care it is not easy to perceive whether their stigmas are ready to be fertilised when the anthers open. But in all cases, as the flowers were protected from wind, rain, and the access of insects, any pollen placed by me on the stigmatic surface whilst it was immature, would generally have remained there until the stigma was mature; and the flowers would then have been crossed as was intended. Nevertheless, it is highly probable that self-fertilised seedlings have sometimes by this means got included amongst the crossed seedlings. The effect would be, as in the former case, not to exaggerate but to diminish any average superiority of the crossed over the self-fertilised plants.
Errors arising from the two causes just named, and from others,—such as some of the seeds not having been thoroughly ripened, though care was taken to avoid this error—the sickness or unperceived injury of any of the plants,—will have been to a large extent eliminated, in those cases in which many crossed and self-fertilised plants were measured and an average struck. Some of these causes of error will also have been eliminated by the seeds having been allowed to germinate on bare damp sand, and being planted in pairs; for it is not likely that ill-matured and well-matured, or diseased and healthy seeds, would germinate at exactly the same time. The same result will have been gained in the several cases in which only a few of the tallest, finest, and healthiest plants on each side of the pots were measured.
Kolreuter and Gartner have proved that with some plants several, even as many as from fifty to sixty, pollen-grains are necessary for the fertilisation of all the ovules in the ovarium. Naudin also found in the case of Mirabilis that if only one or two of its very large pollen-grains were placed on the stigma, the plants raised from such seeds were dwarfed. I was therefore careful to give an amply sufficient supply of pollen, and generally covered the stigma with it; but I did not take any special pains to place exactly the same amount on the stigmas of the self-fertilised and crossed flowers. After having acted in this manner during two seasons, I remembered that Gartner thought, though without any direct evidence, that an excess of pollen was perhaps injurious. It was therefore necessary to ascertain whether the fertility of the flowers was affected by applying a rather small and an extremely large quantity of pollen to the stigma. Accordingly a very small mass of pollen-grains was placed on one side of the large stigma in sixty-four flowers of Ipomoea purpurea, and a great mass of pollen over the whole surface of the stigma in sixty-four other flowers. In order to vary the experiment, half the flowers of both lots were on plants produced from self-fertilised seeds, and the other half on plants from crossed seeds. The sixty-four flowers with an excess of pollen yielded sixty-one capsules; and excluding four capsules, each of which contained only a single poor seed, the remainder contained on an average 5.07 seeds per capsule. The sixty-four flowers with only a little pollen placed on one side of the stigma yielded sixty-three capsules, and excluding one from the same cause as before, the remainder contained on an average 5.129 seeds. So that the flowers fertilised with little pollen yielded rather more capsules and seeds than did those fertilised with an excess; but the difference is too slight to be of any significance. On the other hand, the seeds produced by the flowers with an excess of pollen were a little heavier of the two; for 170 of them weighed 79.67 grains, whilst 170 seeds from the flowers with very little pollen weighed 79.20 grains. Both lots of seeds having been placed on damp sand presented no difference in their rate of germination. We may therefore conclude that my experiments were not affected by any slight difference in the amount of pollen used; a sufficiency having been employed in all cases.
The passage states that which of the following is true?
The seeds were allowed to germinate on the top of soil.
It was impossible to eliminate many of the occurring errors.
Self-sterile plants often become fertilised when placed in close proximity with one another.
The interference of Thrips causes a great effect on the results of the experiment.
Darwin only considered the large but unmeasured amount of pollen he was placing on each flower's stigma to be a potential variable in his experiment after two seasons.
Darwin only considered the large but unmeasured amount of pollen he was placing on each flower's stigma to be a potential variable in his experiment after two seasons.
In the final paragraph, Darwin writes, "I was therefore careful to give an amply sufficient supply of pollen, and generally covered the stigma with it; but I did not take any special pains to place exactly the same amount on the stigmas of the self-fertilised and crossed flowers. After having acted in this manner during two seasons, I remembered that Gartner thought, though without any direct evidence, that an excess of pollen was perhaps injurious." So, Darwin only considered the large but unmeasured amount of pollen that he placed on flowers' stigmas to be a potential variable in his experiment "after having acted in this manner during two seasons." If you chose the answer "The seeds were allowed to germinate on the top of soil," then it is important to note that the seeds were germinated on sand, not earth or soil, as it says in the third and fourth paragraphs near the end of each.
Example Question #154 : Sat Critical Reading
Adapted from The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom by Charles Darwin (1876)
As it is impossible to exclude such minute pollen-carrying insects as Thrips, flowers which it was intended to fertilise with their own pollen may sometimes have been afterwards crossed with pollen brought by these insects from another flower on the same plant; but as we shall hereafter see, a cross of this kind does not produce any effect, or at most only a slight one. When two or more plants were placed near one another under the same net, as was often done, there is some real though not great danger of the flowers which were believed to be self-fertilised being afterwards crossed with pollen brought by Thrips from a distinct plant. I have said that the danger is not great because I have often found that plants which are self-sterile, unless aided by insects, remained sterile when several plants of the same species were placed under the same net. If, however, the flowers which had been presumably self-fertilised by me were in any case afterwards crossed by Thrips with pollen brought from a distinct plant, crossed seedlings would have been included amongst the self-fertilised; but it should be especially observed that this occurrence would tend to diminish and not to increase any superiority in average height, fertility, etc., of the crossed over the self-fertilised plants.
As the flowers which were crossed were never castrated, it is probable or even almost certain that I sometimes failed to cross-fertilise them effectually, and that they were afterwards spontaneously self-fertilised. This would have been most likely to occur with dichogamous species, for without much care it is not easy to perceive whether their stigmas are ready to be fertilised when the anthers open. But in all cases, as the flowers were protected from wind, rain, and the access of insects, any pollen placed by me on the stigmatic surface whilst it was immature, would generally have remained there until the stigma was mature; and the flowers would then have been crossed as was intended. Nevertheless, it is highly probable that self-fertilised seedlings have sometimes by this means got included amongst the crossed seedlings. The effect would be, as in the former case, not to exaggerate but to diminish any average superiority of the crossed over the self-fertilised plants.
Errors arising from the two causes just named, and from others,—such as some of the seeds not having been thoroughly ripened, though care was taken to avoid this error—the sickness or unperceived injury of any of the plants,—will have been to a large extent eliminated, in those cases in which many crossed and self-fertilised plants were measured and an average struck. Some of these causes of error will also have been eliminated by the seeds having been allowed to germinate on bare damp sand, and being planted in pairs; for it is not likely that ill-matured and well-matured, or diseased and healthy seeds, would germinate at exactly the same time. The same result will have been gained in the several cases in which only a few of the tallest, finest, and healthiest plants on each side of the pots were measured.
Kolreuter and Gartner have proved that with some plants several, even as many as from fifty to sixty, pollen-grains are necessary for the fertilisation of all the ovules in the ovarium. Naudin also found in the case of Mirabilis that if only one or two of its very large pollen-grains were placed on the stigma, the plants raised from such seeds were dwarfed. I was therefore careful to give an amply sufficient supply of pollen, and generally covered the stigma with it; but I did not take any special pains to place exactly the same amount on the stigmas of the self-fertilised and crossed flowers. After having acted in this manner during two seasons, I remembered that Gartner thought, though without any direct evidence, that an excess of pollen was perhaps injurious. It was therefore necessary to ascertain whether the fertility of the flowers was affected by applying a rather small and an extremely large quantity of pollen to the stigma. Accordingly a very small mass of pollen-grains was placed on one side of the large stigma in sixty-four flowers of Ipomoea purpurea, and a great mass of pollen over the whole surface of the stigma in sixty-four other flowers. In order to vary the experiment, half the flowers of both lots were on plants produced from self-fertilised seeds, and the other half on plants from crossed seeds. The sixty-four flowers with an excess of pollen yielded sixty-one capsules; and excluding four capsules, each of which contained only a single poor seed, the remainder contained on an average 5.07 seeds per capsule. The sixty-four flowers with only a little pollen placed on one side of the stigma yielded sixty-three capsules, and excluding one from the same cause as before, the remainder contained on an average 5.129 seeds. So that the flowers fertilised with little pollen yielded rather more capsules and seeds than did those fertilised with an excess; but the difference is too slight to be of any significance. On the other hand, the seeds produced by the flowers with an excess of pollen were a little heavier of the two; for 170 of them weighed 79.67 grains, whilst 170 seeds from the flowers with very little pollen weighed 79.20 grains. Both lots of seeds having been placed on damp sand presented no difference in their rate of germination. We may therefore conclude that my experiments were not affected by any slight difference in the amount of pollen used; a sufficiency having been employed in all cases.
The last paragraph establishes all of the following EXCEPT __________.
Gartner believed that more pollen was harmful to fertilization without cause.
The under-pollinated flowers yielded more capsules.
For two seasons, the author neglected to give exactly equal amounts of pollen to the flowers.
Overall, the over-pollinated seeds produced sixty five capsules.
Experiments were conducted to verify variables.
Overall, the over-pollinated seeds produced sixty five capsules.
The author states that overall the sixty-four flowers which were given more pollen produced sixty-one capsules, of which four were not used in the calculation of averages due to their contents being of poor quality.
Example Question #32 : Natural Sciences
Adapted from The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom by Charles Darwin (1876)
As it is impossible to exclude such minute pollen-carrying insects as Thrips, flowers which it was intended to fertilise with their own pollen may sometimes have been afterwards crossed with pollen brought by these insects from another flower on the same plant; but as we shall hereafter see, a cross of this kind does not produce any effect, or at most only a slight one. When two or more plants were placed near one another under the same net, as was often done, there is some real though not great danger of the flowers which were believed to be self-fertilised being afterwards crossed with pollen brought by Thrips from a distinct plant. I have said that the danger is not great because I have often found that plants which are self-sterile, unless aided by insects, remained sterile when several plants of the same species were placed under the same net. If, however, the flowers which had been presumably self-fertilised by me were in any case afterwards crossed by Thrips with pollen brought from a distinct plant, crossed seedlings would have been included amongst the self-fertilised; but it should be especially observed that this occurrence would tend to diminish and not to increase any superiority in average height, fertility, etc., of the crossed over the self-fertilised plants.
As the flowers which were crossed were never castrated, it is probable or even almost certain that I sometimes failed to cross-fertilise them effectually, and that they were afterwards spontaneously self-fertilised. This would have been most likely to occur with dichogamous species, for without much care it is not easy to perceive whether their stigmas are ready to be fertilised when the anthers open. But in all cases, as the flowers were protected from wind, rain, and the access of insects, any pollen placed by me on the stigmatic surface whilst it was immature, would generally have remained there until the stigma was mature; and the flowers would then have been crossed as was intended. Nevertheless, it is highly probable that self-fertilised seedlings have sometimes by this means got included amongst the crossed seedlings. The effect would be, as in the former case, not to exaggerate but to diminish any average superiority of the crossed over the self-fertilised plants.
Errors arising from the two causes just named, and from others,—such as some of the seeds not having been thoroughly ripened, though care was taken to avoid this error—the sickness or unperceived injury of any of the plants,—will have been to a large extent eliminated, in those cases in which many crossed and self-fertilised plants were measured and an average struck. Some of these causes of error will also have been eliminated by the seeds having been allowed to germinate on bare damp sand, and being planted in pairs; for it is not likely that ill-matured and well-matured, or diseased and healthy seeds, would germinate at exactly the same time. The same result will have been gained in the several cases in which only a few of the tallest, finest, and healthiest plants on each side of the pots were measured.
Kolreuter and Gartner have proved that with some plants several, even as many as from fifty to sixty, pollen-grains are necessary for the fertilisation of all the ovules in the ovarium. Naudin also found in the case of Mirabilis that if only one or two of its very large pollen-grains were placed on the stigma, the plants raised from such seeds were dwarfed. I was therefore careful to give an amply sufficient supply of pollen, and generally covered the stigma with it; but I did not take any special pains to place exactly the same amount on the stigmas of the self-fertilised and crossed flowers. After having acted in this manner during two seasons, I remembered that Gartner thought, though without any direct evidence, that an excess of pollen was perhaps injurious. It was therefore necessary to ascertain whether the fertility of the flowers was affected by applying a rather small and an extremely large quantity of pollen to the stigma. Accordingly a very small mass of pollen-grains was placed on one side of the large stigma in sixty-four flowers of Ipomoea purpurea, and a great mass of pollen over the whole surface of the stigma in sixty-four other flowers. In order to vary the experiment, half the flowers of both lots were on plants produced from self-fertilised seeds, and the other half on plants from crossed seeds. The sixty-four flowers with an excess of pollen yielded sixty-one capsules; and excluding four capsules, each of which contained only a single poor seed, the remainder contained on an average 5.07 seeds per capsule. The sixty-four flowers with only a little pollen placed on one side of the stigma yielded sixty-three capsules, and excluding one from the same cause as before, the remainder contained on an average 5.129 seeds. So that the flowers fertilised with little pollen yielded rather more capsules and seeds than did those fertilised with an excess; but the difference is too slight to be of any significance. On the other hand, the seeds produced by the flowers with an excess of pollen were a little heavier of the two; for 170 of them weighed 79.67 grains, whilst 170 seeds from the flowers with very little pollen weighed 79.20 grains. Both lots of seeds having been placed on damp sand presented no difference in their rate of germination. We may therefore conclude that my experiments were not affected by any slight difference in the amount of pollen used; a sufficiency having been employed in all cases.
Which of the following statements about the plants is supported by the passage?
The plants were raised by choice in proximity to insects.
Meshes were used during the growing period.
To protect the plants, they were placed in greenhouses.
In each experiment, the plants were all variants of the same species.
The plants were recommended by another scientist.
Meshes were used during the growing period.
During the discussion of Thrips in the first paragraph, the author mentions the use of nets, which can be interpreted as protective meshes, to protect the plants: “several plants of the same species were placed under the same net.” There is no mention in the text of the use of variants.
Example Question #155 : Sat Critical Reading
Adapted from The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom by Charles Darwin (1876)
As it is impossible to exclude such minute pollen-carrying insects as Thrips, flowers which it was intended to fertilise with their own pollen may sometimes have been afterwards crossed with pollen brought by these insects from another flower on the same plant; but as we shall hereafter see, a cross of this kind does not produce any effect, or at most only a slight one. When two or more plants were placed near one another under the same net, as was often done, there is some real though not great danger of the flowers which were believed to be self-fertilised being afterwards crossed with pollen brought by Thrips from a distinct plant. I have said that the danger is not great because I have often found that plants which are self-sterile, unless aided by insects, remained sterile when several plants of the same species were placed under the same net. If, however, the flowers which had been presumably self-fertilised by me were in any case afterwards crossed by Thrips with pollen brought from a distinct plant, crossed seedlings would have been included amongst the self-fertilised; but it should be especially observed that this occurrence would tend to diminish and not to increase any superiority in average height, fertility, etc., of the crossed over the self-fertilised plants.
As the flowers which were crossed were never castrated, it is probable or even almost certain that I sometimes failed to cross-fertilise them effectually, and that they were afterwards spontaneously self-fertilised. This would have been most likely to occur with dichogamous species, for without much care it is not easy to perceive whether their stigmas are ready to be fertilised when the anthers open. But in all cases, as the flowers were protected from wind, rain, and the access of insects, any pollen placed by me on the stigmatic surface whilst it was immature, would generally have remained there until the stigma was mature; and the flowers would then have been crossed as was intended. Nevertheless, it is highly probable that self-fertilised seedlings have sometimes by this means got included amongst the crossed seedlings. The effect would be, as in the former case, not to exaggerate but to diminish any average superiority of the crossed over the self-fertilised plants.
Errors arising from the two causes just named, and from others,—such as some of the seeds not having been thoroughly ripened, though care was taken to avoid this error—the sickness or unperceived injury of any of the plants,—will have been to a large extent eliminated, in those cases in which many crossed and self-fertilised plants were measured and an average struck. Some of these causes of error will also have been eliminated by the seeds having been allowed to germinate on bare damp sand, and being planted in pairs; for it is not likely that ill-matured and well-matured, or diseased and healthy seeds, would germinate at exactly the same time. The same result will have been gained in the several cases in which only a few of the tallest, finest, and healthiest plants on each side of the pots were measured.
Kolreuter and Gartner have proved that with some plants several, even as many as from fifty to sixty, pollen-grains are necessary for the fertilisation of all the ovules in the ovarium. Naudin also found in the case of Mirabilis that if only one or two of its very large pollen-grains were placed on the stigma, the plants raised from such seeds were dwarfed. I was therefore careful to give an amply sufficient supply of pollen, and generally covered the stigma with it; but I did not take any special pains to place exactly the same amount on the stigmas of the self-fertilised and crossed flowers. After having acted in this manner during two seasons, I remembered that Gartner thought, though without any direct evidence, that an excess of pollen was perhaps injurious. It was therefore necessary to ascertain whether the fertility of the flowers was affected by applying a rather small and an extremely large quantity of pollen to the stigma. Accordingly a very small mass of pollen-grains was placed on one side of the large stigma in sixty-four flowers of Ipomoea purpurea, and a great mass of pollen over the whole surface of the stigma in sixty-four other flowers. In order to vary the experiment, half the flowers of both lots were on plants produced from self-fertilised seeds, and the other half on plants from crossed seeds. The sixty-four flowers with an excess of pollen yielded sixty-one capsules; and excluding four capsules, each of which contained only a single poor seed, the remainder contained on an average 5.07 seeds per capsule. The sixty-four flowers with only a little pollen placed on one side of the stigma yielded sixty-three capsules, and excluding one from the same cause as before, the remainder contained on an average 5.129 seeds. So that the flowers fertilised with little pollen yielded rather more capsules and seeds than did those fertilised with an excess; but the difference is too slight to be of any significance. On the other hand, the seeds produced by the flowers with an excess of pollen were a little heavier of the two; for 170 of them weighed 79.67 grains, whilst 170 seeds from the flowers with very little pollen weighed 79.20 grains. Both lots of seeds having been placed on damp sand presented no difference in their rate of germination. We may therefore conclude that my experiments were not affected by any slight difference in the amount of pollen used; a sufficiency having been employed in all cases.
Which of the following most fully lists errors named by the author in the third paragraph?
Cross-pollination by bugs, pollination by physical contact, pollination by air, and defects in seeds
Insects, unripe seeds, and physical defects
Immature seeds, illness, and unnoticed trauma
None of the other answers
Thrips, cross-pollination, imperfect seeds , and unhealthy plants
Immature seeds, illness, and unnoticed trauma
The third paragraph cross-references the previous two paragraphs, but does not mention the errors discussed in those paragraphs by name. The errors named in the paragraph are “the seeds not having been thoroughly ripened” and “the sickness or unperceived injury of any of the plants.” The rest of the paragraph is concerned with how these errors were avoided.
Example Question #2 : Identifying And Analyzing Important Details In Natural Science Passages
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
In the third paragraph, the information about orthography serves to __________.
Show that mistakes in spelling "gaivotas" as "guayvotas" arose due to arguments over proper roots of words.
Show that the author of the roteiro was more interested in the animals than his or her writing.
Show that the differences between "guayvotas" and "gaivotas" are due to the writer's strange way of spelling things.
Show that the birds we see today are a different species to those mentioned in the roteiro.
Show that the previous documenters of bird-life on the country had little idea of what they were doing.
Show that the differences between "guayvotas" and "gaivotas" are due to the writer's strange way of spelling things.
The author of the passage mentions the strange spelling of the name for gulls and says they come from the author of the roteiro's “eccentric orthography,” or strange way of spelling things.
Example Question #3 : Identifying And Analyzing Important Details In Natural Science Passages
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
It can reasonably be inferred from the passage that which of the following is true?
The penguins were inquisitive.
The penguins were smaller than ducks.
The natives were afraid of water.
The extinction of the seals was caused by human interference.
The Portuguese explored the coast before the Dutch.
The Portuguese explored the coast before the Dutch.
The last paragraph mentions the first Dutch exploration, which took place in 1595. From the information presented in the last line of the previous paragraph, we know that the Portuguese stopped on the coast in 1499 on a return voyage, so it is safe to assume they explored the coast before the Dutch.
Example Question #34 : Natural Sciences
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
The passage states that which of the following is true?
The tops of penguins' wings lack a feathery covering.
The animals provided the nourishment to treat scurvy.
The small seals made a sound like that of baby goats, or kids.
Perestrello mistook fish bones for the bodies of dead seals.
There was more than one species of seal on the coast.
The small seals made a sound like that of baby goats, or kids.
In the sixth paragraph, the author recounts the roteiro that says that of the large amount of seals there was a great variety of size and character. The larger ones were said to be the size of bears and “[roar] like lions” whilst the smaller “bleated like kids.” A baby goat is called a "kid."
Example Question #4 : Identifying And Analyzing Important Details In Natural Science Passages
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
Which of the following statements about the people described in the second paragraph is supported by the passage?
They lived a considerable distance inland.
They most certainly used foxes tails for flags.
They used bones for the points on their weapons.
They ate whale, seal, and antelope meat, as well as certain roots.
Their diet did not vary greatly.
They ate whale, seal, and antelope meat, as well as certain roots.
The second paragraph says, "The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants." The other statements, although close to the truth, each vary from the information given in the text. We know, for instance, that their spears were tipped with horn, not bone.
Example Question #173 : Sat Critical Reading
Adapted from Essays on Early Ornithology and Kindred Subjects by James R. McClymont (1920)
The voyagers named it the Angra de Santa Elena, and it may have been the bay which is now known as St. Helen’s Bay. But it is worthy of note that the G. de Sta. Ellena of the Cantino Chart is laid down in a position which corresponds rather with that of Table Bay than with that of St. Helen’s Bay.
The Portuguese came into contact with the inhabitants of the country adjacent to the anchorage. These people had tawny complexions, and carried wooden spears tipped with horn—assagais of a kind—and bows and arrows. They also used foxes’ tails attached to short wooden handles. We are not informed for what purposes the foxes’ tails were used. Were they used to brush flies away, or were they insignia of authority? The food of the natives was the flesh of whales, seals, and antelopes (gazellas), and the roots of certain plants. Crayfish or ‘Cape lobsters’ abounded near the anchorage.
The author of the roteiro affirms that the birds of the country resembled the birds in Portugal, and that amongst them were cormorants, larks, turtle-doves, and gulls. The gulls are called "guayvotas," but "guayvotas" is probably another instance of the eccentric orthography of the author and equivalent to "gaivotas."
In December the squadron reached the Angra de São Bràs, which was either Mossel Bay or another bay in close proximity to Mossel Bay. Here penguins and seals were in great abundance. The author of the roteiro calls the penguins "sotelycairos," which is more correctly written "sotilicarios" by subsequent writers. The word is probably related to the Spanish "sotil" and the Latin "subtilis," and may contain an allusion to the supposed cunning of the penguins, which disappear by diving when an enemy approaches.
The sotilicarios, says the chronicler, could not fly because there were no quill-feathers in their wings; in size they were as large as drakes, and their cry resembled the braying of an ass. Castanheda, Goes, and Osorio also mention the sotilicario in their accounts of the first voyage of Vasco da Gama, and compare its flipper to the wing of a bat—a not wholly inept comparison, for the under-surface of the wings of penguins is wholly devoid of feathery covering. Manuel de Mesquita Perestrello, who visited the south coast of Africa in 1575, also describes the Cape penguin. From a manuscript of his Roteiro in the Oporto Library, one learns that the flippers of the sotilicario were covered with minute feathers, as indeed they are on the upper surface and that they dived after fish, upon which they fed, and on which they fed their young, which were hatched in nests constructed of fishbones. There is nothing to cavil at in these statements, unless it be that which asserts that the nests were constructed of fishbones, for this is not in accordance with the observations of contemporary naturalists, who tell us that the nests of the Cape Penguin (Spheniscus demersus) are constructed of stones, shells, and debris. It is, therefore, probable that the fishbones which Perestrello saw were the remains of repasts of seals.
Seals, says the roteiro, were in great number at the Angra de São Bràs. On one occasion the number was counted and was found to be three thousand. Some were as large as bears and their roaring was as the roaring of lions. Others, which were very small, bleated like kids. These differences in size and in voice may be explained by differences in the age and in the sex of the seals, for seals of different species do not usually resort to the same locality. The seal which formerly frequented the south coast of Africa—for it is, I believe, no longer a denizen of that region—was that which is known to naturalists as Arctocephalus delalandii, and, as adult males sometimes attain eight and a half feet in length, it may well be described as of the size of a bear. Cubs from six to eight months of age measure about two feet and a half in length. The Portuguese caught anchovies in the bay, which they salted to serve as provisions on the voyage. They anchored a second time in the Angra de São Bràs in March, 1499, on their homeward voyage.
Yet one more allusion to the penguins and seals of the Angra de São Bràs is of sufficient historical interest to be mentioned. The first Dutch expedition to Bantam weighed anchor on the 2nd of April, 1595, and on the 4th of August of the same year the vessels anchored in a harbor called "Ague Sambras," in eight or nine fathoms of water, on a sandy bottom. So many of the sailors were sick with scurvy—"thirty or thirty-three," said the narrator, "in one ship"—that it was necessary to find fresh fruit for them. "In this bay," runs the English translation of the narrative, "lieth a small Island wherein are many birds called Pyncuins and sea Wolves that are taken with men’s hands." In the original Dutch narrative by Willem Lodewyckszoon, published in Amsterdam in 1597, the name of the birds appears as "Pinguijns."
The fifth paragraph establishes all of the following EXCEPT __________.
The author partially supports the comparison of a penguin’s wing to a bat's wing.
One scholar maintained that penguins could not fly because of a lack of quill-feathers.
The noise of penguins has been likened to that of a donkey.
One of the sources for the information used was found in Oporto.
The author cites six people who described the penguins in this paragraph.
The author cites six people who described the penguins in this paragraph.
The author cites four people in the paragraph by name: Castanheda, Goes, Osorio and Manuel de Mesquita Perestrello. The first three were on the voyage of Vasco da Gama. The author also continues his citation of a source from the previous paragraph, but including this citation, there are still only five, unless Vasco da Gama was miscounted.