All ACT Reading Resources
Example Questions
Example Question #88 : Natural Sciences
Passage adapted from The Extermination of the American Bison, by William Hornaday (1889).
The history of the buffalo’s daily life and habits should begin with the “running season.” This period occupied the months of August and September, and was characterized by a degree of excitement and activity throughout the entire herd quite foreign to the ease-loving and even slothful nature which was so noticeable a feature of the bison’s character at all other times.
The mating season occurred when the herd was on its summer range. The spring calves were from two to four months old. Through continued feasting on the new crop of buffalo-grass and bunch-grass—the most nutritious in the world, perhaps—every buffalo in the herd had grown round-sided, fat, and vigorous. The faded and weather-beaten suit of winter hair had by that time fallen off and given place to the new coat of dark gray and black, and, excepting for the shortness of his hair, the buffalo was in prime condition.
During the “running season,” as it was called by the plainsmen, the whole nature of the herd was completely changed. Instead of being broken up into countless small groups and dispersed over a vast extent of territory, the herd came together in a dense and confused mass of many thousand individuals, so closely congregated as to actually blacken the face of the landscape. As if by a general and irresistible impulse, every straggler would be drawn to the common center, and for miles on every side of the great herd the country would be found entirely deserted.
At this time the herd itself became a seething mass of activity and excitement. As usual under such conditions, the bulls were half the time chasing the cows, and fighting each other during the other half. These actual combats, which were always of short duration and over in a few seconds after the actual collision took place, were preceded by the usual threatening demonstrations, in which the bull lowers his head until his nose almost touches the ground, roars like a fog-horn until the earth seems to fairly tremble with the vibration, glares madly upon his adversary with half-white eyeballs, and with his forefeet paws up the dry earth and throws it upward in a great cloud of dust high above his back. At such times the mingled roaring—it can not truthfully be described as lowing or bellowing—of a number of huge bulls unite and form a great volume of sound like distant thunder, which has often been heard at a distance of from 1 to 3 miles. I have even been assured by old plainsmen that under favorable atmospheric conditions such sounds have been heard five miles.
According to the passage, the bison gain weight by consuming __________.
wild shrubs and berries
corn from surrounding fields
nutritious grass
hay laid out by the plainsmen
the meat of other prairie mammals
nutritious grass
The second paragraph details how the bison grew fat and vigorous from grass consumption. The description of the buffalo "feasting" on the "the most nutritious [grass] in the world" is followed by a description of their having "grown round-sided, fat, and vigorous." So, although the passage does not specifically say that bison intentionally ate grass to gain weight, the connection is very clear.
There is no mention of "corn," "hay," "wild berries," and "meat" in the passage .
Example Question #111 : Passage Based Questions
Adapted from "Taking a Second Look: An Analysis of Genetic Markers in Species Relatedness" by Joseph Ritchie (2014)
Phylogenetics is the study of genetic composition in various species and is used by evolutionary biologists to investigate similarities in the molecular sequences of proteins in varying organisms. The amino acid sequences that build proteins are used to construct mathematical matrices that aid in determining evolutionary ties through the investigation of percentage similarities. The study of these matrices helps to expose evolutionary relationships between species that may not have the same overt characteristics.
Species adapt and evolve based on the pressures that exist in their environment. Climate, food source, and habitat availability are only a few factors that act on species adaptation. These stressors can alter the physical characteristics of organisms. This divergence in evolution has made it difficult to determine the interrelatedness of organisms by analyzing their physical characteristics alone.
For instance, looking only at physical characteristics, the ghost bat resembles a pigeon more than a spider monkey; however, phylogenetics has found that the amino acid sequences that construct the beta hemoglobin molecules of bats are twenty percent more similar to those of mammalian primates than those of birds. This helps reject the assumption that common physical characteristics between species are all that is needed to determine relatedness.
The differences produced by divergent evolution observed in the forest-dwelling, arboreal spider monkey and the nocturnal, airborne ghost bat can be reconciled through homology. Homologous characteristics are anatomical traits that are similar in two or more different species. For instance, the bone structure of a spider monkey’s wrist and fingers greatly resembles that of a bat’s wing or even a whale’s fin. These similarities are reinforced by phylogenetic evidence that supports the idea that physically dissimilar species can be evolutionarily related through anatomical and genetic similarities.
Which of the following choices represents the primary difficulty encountered in studies of interrelatedness based on physical features?
Divergent evolution
Lack of fossil evidence
Physical fitness
Complexity of beta hemoglobin
Climatic conditions
Divergent evolution
Divergent evolution is stated as the primary reason that physical appearances can change between species while genetic structure remains markedly similar. The passage states that this is an issue for those who study species evolution because some species may appear to be dissimilar in appearance but contain genetic commonalities.
Example Question #43 : Drawing Evidence From Natural Science Passages
Adapted from "Taking a Second Look: An Analysis of Genetic Markers in Species Relatedness" by Joseph Ritchie (2014)
Phylogenetics is the study of genetic composition in various species and is used by evolutionary biologists to investigate similarities in the molecular sequences of proteins in varying organisms. The amino acid sequences that build proteins are used to construct mathematical matrices that aid in determining evolutionary ties through the investigation of percentage similarities. The study of these matrices helps to expose evolutionary relationships between species that may not have the same overt characteristics.
Species adapt and evolve based on the pressures that exist in their environment. Climate, food source, and habitat availability are only a few factors that act on species adaptation. These stressors can alter the physical characteristics of organisms. This divergence in evolution has made it difficult to determine the interrelatedness of organisms by analyzing their physical characteristics alone.
For instance, looking only at physical characteristics, the ghost bat resembles a pigeon more than a spider monkey; however, phylogenetics has found that the amino acid sequences that construct the beta hemoglobin molecules of bats are twenty percent more similar to those of mammalian primates than those of birds. This helps reject the assumption that common physical characteristics between species are all that is needed to determine relatedness.
The differences produced by divergent evolution observed in the forest-dwelling, arboreal spider monkey and the nocturnal, airborne ghost bat can be reconciled through homology. Homologous characteristics are anatomical traits that are similar in two or more different species. For instance, the bone structure of a spider monkey’s wrist and fingers greatly resembles that of a bat’s wing or even a whale’s fin. These similarities are reinforced by phylogenetic evidence that supports the idea that physically dissimilar species can be evolutionarily related through anatomical and genetic similarities.
According to the passage, which of the following is an environmental pressure that can result in species adaptation and evolution?
Physical characteristics
Climate
Competition
Predation
Climate
"Climate" is the only answer choice supported by the passage. The passsage states that "climate," "food source," and "habitat availability" are environmental pressures that may cause adaptations. The choice "physical characteristics" is incorrect because they change as a result to these pressures.
Example Question #242 : Natural Science Passages
Adapted from "Taking a Second Look: An Analysis of Genetic Markers in Species Relatedness" by Joseph Ritchie (2014)
Phylogenetics is the study of genetic composition in various species and is used by evolutionary biologists to investigate similarities in the molecular sequences of proteins in varying organisms. The amino acid sequences that build proteins are used to construct mathematical matrices that aid in determining evolutionary ties through the investigation of percentage similarities. The study of these matrices helps to expose evolutionary relationships between species that may not have the same overt characteristics.
Species adapt and evolve based on the pressures that exist in their environment. Climate, food source, and habitat availability are only a few factors that act on species adaptation. These stressors can alter the physical characteristics of organisms. This divergence in evolution has made it difficult to determine the interrelatedness of organisms by analyzing their physical characteristics alone.
For instance, looking only at physical characteristics, the ghost bat resembles a pigeon more than a spider monkey; however, phylogenetics has found that the amino acid sequences that construct the beta hemoglobin molecules of bats are twenty percent more similar to those of mammalian primates than those of birds. This helps reject the assumption that common physical characteristics between species are all that is needed to determine relatedness.
The differences produced by divergent evolution observed in the forest-dwelling, arboreal spider monkey and the nocturnal, airborne ghost bat can be reconciled through homology. Homologous characteristics are anatomical traits that are similar in two or more different species. For instance, the bone structure of a spider monkey’s wrist and fingers greatly resembles that of a bat’s wing or even a whale’s fin. These similarities are reinforced by phylogenetic evidence that supports the idea that physically dissimilar species can be evolutionarily related through anatomical and genetic similarities.
According to the passage, the hemoglobin structure of a bat is most similar to which of the following animals?
Hummingbird
Spider monkey
Pigeon
Eagle
Spider monkey
The spider monkey is the only mammalian species listed in the choices. The other choices are birds, which the passage states are less similar to bats than mammals. Therefore, also being a mammalian species, spider monkey is the correct answer.
Example Question #113 : Passage Based Questions
Adapted from "Taking a Second Look: An Analysis of Genetic Markers in Species Relatedness" by Joseph Ritchie (2014)
Phylogenetics is the study of genetic composition in various species and is used by evolutionary biologists to investigate similarities in the molecular sequences of proteins in varying organisms. The amino acid sequences that build proteins are used to construct mathematical matrices that aid in determining evolutionary ties through the investigation of percentage similarities. The study of these matrices helps to expose evolutionary relationships between species that may not have the same overt characteristics.
Species adapt and evolve based on the pressures that exist in their environment. Climate, food source, and habitat availability are only a few factors that act on species adaptation. These stressors can alter the physical characteristics of organisms. This divergence in evolution has made it difficult to determine the interrelatedness of organisms by analyzing their physical characteristics alone.
For instance, looking only at physical characteristics, the ghost bat resembles a pigeon more than a spider monkey; however, phylogenetics has found that the amino acid sequences that construct the beta hemoglobin molecules of bats are twenty percent more similar to those of mammalian primates than those of birds. This helps reject the assumption that common physical characteristics between species are all that is needed to determine relatedness.
The differences produced by divergent evolution observed in the forest-dwelling, arboreal spider monkey and the nocturnal, airborne ghost bat can be reconciled through homology. Homologous characteristics are anatomical traits that are similar in two or more different species. For instance, the bone structure of a spider monkey’s wrist and fingers greatly resembles that of a bat’s wing or even a whale’s fin. These similarities are reinforced by phylogenetic evidence that supports the idea that physically dissimilar species can be evolutionarily related through anatomical and genetic similarities.
According to the passage, which of the following does a bat most physically resemble?
Whale
Owl
Pigeon
Spider monkey
Pigeon
According to paragraph three, the ghost bat most physically resembles a pigeon. This content of the passage seeks to disprove this observation, as a bat is genetically more closely related to a monkey or whale than a winged bird.