ACT Math : Cosine

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Find A Missing Side With Cosine

Cos75

What is \displaystyle \small x in the right triangle above? Round to the nearest hundredth.

Possible Answers:

\displaystyle \small 64.44

\displaystyle \small 264.52

\displaystyle \small 369.58

\displaystyle \small 63.51

\displaystyle \small 355.83

Correct answer:

\displaystyle \small 369.58

Explanation:

Recall that the cosine of an angle is the ratio of the adjacent side to the hypotenuse of that triangle. Thus, for this triangle, we can say:

\displaystyle \small cos(9.75)=\frac{x}{375}

Solving for \displaystyle \small x, we get:

\displaystyle \small 375*cos(9.75)=x

\displaystyle \small x=369.58352214677914 or \displaystyle \small 369.58

Example Question #4 : How To Find A Missing Side With Cosine

A man has a rope that is \displaystyle 40\textup{ feet} long, attached to the top of a small building. He pegs the rope into the ground at an angle of \displaystyle 14.5$^{\circ}$. How far away from the building did he walk horizontally to attach the rope to the ground? Round to the nearest inch.

Possible Answers:

\displaystyle 37\textup{ feet and 5 inches}

\displaystyle 10\textup{ feet and 4 inches}

\displaystyle 38\textup{ feet and }9\textup{ inches}

\displaystyle 10\textup{ feet}

\displaystyle 12\textup{ feet and }4\textup{ inches}

Correct answer:

\displaystyle 38\textup{ feet and }9\textup{ inches}

Explanation:

Begin by drawing out this scenario using a little right triangle:

Cos30

We know that the cosine of an angle is equal to the ratio of the side adjacent to that angle to the hypotenuse of the triangle. Thus, for our triangle, we know:

\displaystyle cos(14.5) =\frac{x}{40}

Using your calculator, solve for \displaystyle x:

\displaystyle x=40cos(14.5)

This is \displaystyle 38.72590561512431. Now, take the decimal portion in order to find the number of inches involved.

\displaystyle 0.72590561512431 * 12 = 8.71086738149172

Thus, rounded, your answer is \displaystyle 38 feet and \displaystyle 9 inches.

 

Example Question #1 : How To Find A Missing Side With Cosine

Right triangle

In the right triangle shown above, what is the \displaystyle \cos\left (A \right )?

Possible Answers:

\displaystyle \frac{b}{c}

\displaystyle \frac{a}{b}

\displaystyle \frac{c}{a}

\displaystyle \frac{a}{c}

\displaystyle \frac{b}{a}

Correct answer:

\displaystyle \frac{b}{c}

Explanation:

Use SOH-CAH-TOA to solve for the sine of a given angle. This stands for:

\displaystyle \sin = \frac{\textup{opposite}}{\textup{hypotenuse}}

\displaystyle \cos = \frac{\textup{adjacent}}{\textup{hypotenuse}}

\displaystyle \tan = \frac{\textup{opposite}}{\textup{adjacent}}.

From our triangle we see that at point \displaystyle A, the adjacent side is side \displaystyle b and the hypotenuse doesn't depend upon position, it's always \displaystyle c. Thus we get that \displaystyle cos(A)=\frac{b}{c}

Right triangle

Example Question #4 : How To Find A Missing Side With Cosine

In a given right triangle \displaystyle \Delta ABC, hypotenuse \displaystyle AC = 25 and \displaystyle \angle A = 42^{\circ}. Using the definition of \displaystyle \cos, find the length of leg \displaystyle AB. Round all calculations to the nearest tenth.

Possible Answers:

\displaystyle 16.6

\displaystyle 7.0

\displaystyle 17.5

\displaystyle 8.4

\displaystyle 24.0

Correct answer:

\displaystyle 17.5

Explanation:

In right triangles, SOHCAHTOA tells us that \displaystyle \cos A =\frac{\textup{adjacent}}{\textup{hypotenuse}}, and we know that \displaystyle \angle A = 42^{\circ} and hypotenuse \displaystyle AC = 25. Therefore, a simple substitution and some algebra gives us our answer.

\displaystyle \cos 42^{\circ} = \frac{AB}{25}

\displaystyle .7 = \frac{AB}{25} Use a calculator or reference to approximate cosine.

\displaystyle 17.5= AB Isolate the variable term.

 

Thus, \displaystyle 17.5= AB.

Example Question #3021 : Act Math

In a given right triangle \displaystyle \Delta ABC, hypotenuse \displaystyle AC = 42 and \displaystyle \angle C = 75^{\circ}. Using the definition of \displaystyle \cos, find the length of leg \displaystyle CB. Round all calculations to the nearest tenth.

Possible Answers:

\displaystyle 1.4

\displaystyle 12.6

\displaystyle 8.3

\displaystyle 2.2

\displaystyle 5.5

Correct answer:

\displaystyle 12.6

Explanation:

In right triangles, SOHCAHTOA tells us that \displaystyle \cos C = \frac{\textup{adjacent}}{\textup{hypotenuse}}, and we know that \displaystyle A = 75^{\circ} and hypotenuse \displaystyle AC = 42. Therefore, a simple substitution and some algebra gives us our answer.

\displaystyle \cos 75^{\circ} = \frac{CB}{42}

\displaystyle .3 = \frac{CB}{42} Use a calculator or reference to approximate cosine.

\displaystyle 12.6= CB Isolate the variable term.

 

Thus, \displaystyle 12.6= CB.

Example Question #1 : How To Find A Missing Side With Cosine

An airline pilot must know the exact vertical height of his plane above the runway to know when to extend the landing gear under the nose. If the nose of the plane is \displaystyle 43 feet away from the ground and the plane is descending at an angle of \displaystyle 75 ^{\circ} to the vertical, how far above the ground to the nearest \displaystyle .01 foot is the landing gear?

(Ignore the height of the plane itself).

Possible Answers:

\displaystyle 14.40

\displaystyle 7.99

\displaystyle 11.13

\displaystyle 42.80

\displaystyle 37.72

Correct answer:

\displaystyle 11.13

Explanation:

The plane itself is effectively at the top of a right triangle, with topmost angle \displaystyle 75^{\circ} and hypotenuse \displaystyle 43 feet. If this is the case, then SOHCAHTOA tells us that \displaystyle \textup{cos} (75)^{\circ} = \frac{\textup{adjacent}}{\textup{hypotenuse}} = \frac{x}{43}.

Now, solve for the adjacent:

\displaystyle x = \textup{cos}(75^{\circ}) \cdot 43 \approx 11.13

Thus, our plane's nose is approximately \displaystyle 11.13 feet from the runway.

Example Question #1 : How To Find A Missing Side With Cosine

Edgar is standing at the top of a 35-foot long slide. He knows that the angle between the top of the slide and the ladder that he climbed to reach the top is 68 degrees. If the ladder meets the ground at a right angle, how far did Edgar climb?

Possible Answers:

\displaystyle 35\tan 68^{\circ}

\displaystyle 35\sin 68^{\circ}

\displaystyle \frac{35}{\sin 68^{\circ}}

\displaystyle 35\cos 68^{\circ}

\displaystyle \frac{35}{\cos 68^{\circ}}

Correct answer:

\displaystyle 35\cos 68^{\circ}

Explanation:

Edgar is standing on top of a right triangle because the angle from the vertical ladder to the ground is 90 degrees. To solve this question, you must know SOHCAHTOA. This acronym can be broken into three parts to solve for the sine, cosine, and tangent.

\displaystyle \textup{SOH: }\textup{Sine}=\frac{\textup{opposite}}{\textup{hypotenuse}}

\displaystyle \textup{CAH: }\textup{Cosine}=\frac{\textup{adjacent}}{\textup{hypotenuse}}

\displaystyle \textup{TOA: }\textup{Tangent}=\frac{\textup{opposite}}{\textup{adjacent}}

In order to solve for the missing side, you need to choose the trigonometric function that includes the side you need to find and the side that you know, relative to the angle that you know. In this case, you know the hypotenuse, so you would not use the tangent function; furthermore, you are looking for the side that is adjacent to the 68-degree angle. Thus, you need the function that incorporates adjacent and hypotenuse—the cosine function.

\displaystyle \cos 68^{\circ}=\frac{x}{35}

\displaystyle 35\cos 68^{\circ}=\frac{x}{35}\cdot 35

\displaystyle 35\cos 68^{\circ}=x

Typically, you would use a calculator at this point to calculate the cosine function; however, based on the answer choices provided, you can stop at this point.

Example Question #11 : Cosine

In a given right triangle \displaystyle \Delta ABC, hypotenuse \displaystyle AC = 8 and \displaystyle \angle A = 66^{\circ}. Using the definition of \displaystyle \cos, find the length of leg \displaystyle AB. Round all calculations to the nearest hundredth.

Possible Answers:

\displaystyle 2.92

\displaystyle 3.28

\displaystyle 4.40

\displaystyle 4.55

\displaystyle 3.78

Correct answer:

\displaystyle 3.28

Explanation:

In right triangles, SOHCAHTOA tells us that \displaystyle \cos A = \frac{\textup{adjacent}}{\textup{hypotenuse}}, and we know that \displaystyle A = 66^{\circ} and hypotenuse \displaystyle AC = 8. Therefore, a simple substitution and some algebra gives us our answer.

\displaystyle \cos 66^{\circ} = \frac{AB}{8}

\displaystyle .41 = \frac{AB}{8} Use a calculator or reference to approximate cosine.

\displaystyle 3.28= AB Isolate the variable term.

 

Thus, \displaystyle 3.28= AB.

Example Question #1 : How To Find The Domain Of The Cosine

What is the domain of \displaystyle y=cos(\theta) -3?

Possible Answers:

\displaystyle {}(-\infty,\infty)

\displaystyle (-\infty,-3]

\displaystyle [-3,3]

\displaystyle {}(-\infty,-3)

Does not exist.

Correct answer:

\displaystyle {}(-\infty,\infty)

Explanation:

The domain of a function is referring to the x values that can be plugged into the function and produce a value.

The domain of the parent function \displaystyle cos(\theta) has a domain from negative infinity to positive infinity.  

The \displaystyle -3 term only shifts the function down three units, which will not affect the domain of the cosine graph.

Therefore, the answer is \displaystyle {}(-\infty,\infty).

Example Question #1 : How To Find The Domain Of The Cosine

Given a function \displaystyle y=2cos(\theta)+6, what is a valid domain?

Possible Answers:

\displaystyle [2,6]

\displaystyle (2,6)

\displaystyle [0,\infty)

\displaystyle (-\infty, \infty)

\displaystyle (0,\infty)

Correct answer:

\displaystyle (-\infty, \infty)

Explanation:

The function \displaystyle y=2cos(\theta)+6 is related to the parent function \displaystyle y=cos(\theta).

The domain of the parent function is \displaystyle (-\infty,\infty).  The values \displaystyle 2 and \displaystyle 6 will not affect the domain of the curve. 

The answer is \displaystyle (-\infty,\infty).

Learning Tools by Varsity Tutors