ACT Math : How to use FOIL with the distributive property

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1141 : Algebra

Distribute:

Possible Answers:

Correct answer:

Explanation:

FOIL using the distributive property.

Simplify. 

Example Question #52 : Distributive Property

Distribute and simplify: 

Possible Answers:

Correct answer:

Explanation:

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

 

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms):

Arrange your answer in descending exponential form, and you're done.

Example Question #53 : Distributive Property

What is the simplified form of ?

Possible Answers:

Correct answer:

Explanation:

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms):

Arrange your answer in descending exponential form, and you're done.

Notice that this answer is also a difference of squares.

Example Question #54 : Distributive Property

Distribute and simplify: 

Possible Answers:

Correct answer:

Explanation:

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

 

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms):

Arrange your answer in descending exponential form, and you're done.

 

Example Question #55 : Distributive Property

Distribute and simplify: 

Possible Answers:

Correct answer:

Explanation:

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

 

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms):

Arrange your answer in descending exponential form, and you're done.

Example Question #56 : Distributive Property

Distribute and simplify: 

Possible Answers:

Correct answer:

Explanation:

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

 

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms):

Arrange your answer in descending exponential form, and you're done.

Example Question #52 : Distributive Property

Distribute and simplify: 

Possible Answers:

Correct answer:

Explanation:

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

 

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms):

Arrange your answer in descending exponential form, and you're done.

Example Question #53 : Distributive Property

Distribute and simplify: 

Possible Answers:

Correct answer:

Explanation:

The trick to this expression is to remember that only those terms which share both common variables AND common exponents are additive. In other words, you cannot add  any more than you can add .

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

 

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms). In this case, no two terms are compatible.

Arrange your answer in descending exponential form, and you're done.

Learning Tools by Varsity Tutors