ACT Math : Distributive Property

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #41 : Distributive Property

\displaystyle (2x+3)(10x-2)=

Possible Answers:

\displaystyle 20x^2+26x-6

\displaystyle 20x^2-26x-6

\displaystyle 10x^2+26x-6

\displaystyle 10x^2+26x+6

Correct answer:

\displaystyle 20x^2+26x-6

Explanation:

Use the distributive property to FOIL.

\displaystyle 20x^2-4x+30x-6

\displaystyle =20x^2+26x-6

Example Question #42 : Distributive Property

\displaystyle (x+y)(y+z)

 

Possible Answers:

\displaystyle y^2-xy-xz+yz

\displaystyle y+xy+xz+yz

\displaystyle y^2+xy+xz+yz

\displaystyle y^2+xy+xz-yz

Correct answer:

\displaystyle y^2+xy+xz+yz

Explanation:

FOIL using the distributive property.

\displaystyle (x+y)(y+z)=xy+xz+y^2+yz

\displaystyle =y^2+xy+xz+yz

Example Question #43 : Distributive Property

\displaystyle (3x-5)(x+3)

Possible Answers:

\displaystyle x^2+4x-15

\displaystyle 3x^2+4x-15

\displaystyle 3x^2-4x-15

\displaystyle 3x^2+4x+15

Correct answer:

\displaystyle 3x^2+4x-15

Explanation:

Use the distributive property to FOIL.

\displaystyle 3x^2+9x-5x-15

Simplify.

\displaystyle 3x^2+4x-15

Example Question #44 : Distributive Property

Use FOIL to expand

\displaystyle (x+2)(x-5)

Possible Answers:

\displaystyle x^2-3x-10

\displaystyle x-3

\displaystyle x^2-10

\displaystyle x^2+3x-10

Correct answer:

\displaystyle x^2-3x-10

Explanation:

To FOIL, simply multiply each term by each term in the other parenthesis. Thus,

\displaystyle x*x+x*(-5)+x*(2)+(-5)(2)=x^2-5x+2x-10=x^2-3x-10

Example Question #41 : Foil

FOIL the following:

\displaystyle (x-2)(x+3)

Possible Answers:

\displaystyle x^2-x-6

\displaystyle x^2+5x-6

\displaystyle x^2-x+6

\displaystyle x^2+x-6

Correct answer:

\displaystyle x^2+x-6

Explanation:

To FOIL, remember the acronym. F-first, O-outside, I-inside, L-last. 

Thus, perform the following multiplication.

\displaystyle (x-2)(x+3)

Firsts: \displaystyle x\cdot x=x^2

Outside: \displaystyle x\cdot 3=3x

Inside: \displaystyle -2\cdot x=-2x

Lasts: \displaystyle -2\cdot 3=-6

Gathering like terms results in the final equation.

\displaystyle \\=x^2+3x-2x-6\\=x^2+x-6

Example Question #1141 : Algebra

What is \displaystyle (2x-3)(2x+3)?

Possible Answers:

\displaystyle 9x^2 - 4

\displaystyle 3x^2 - 6

\displaystyle 6x^2 - 6

\displaystyle 6x^2 - 3

\displaystyle 4x^2 - 9

Correct answer:

\displaystyle 4x^2 - 9

Explanation:

The simple formula for difference of two squares is:

\displaystyle (2x-3)(2x+3) = 2^2 x^2 - 3^2.  

To see this, you can also FOIL out

 \displaystyle (2x-3)(2x+3)=

Multiplying the first terms, outer terms, inner terms, and last terms results in the following.

\displaystyle 4x^2 + 6x - 6x - 9 =

Gathering like terms the x's cancel out.

\displaystyle 4x^2 - 9

Example Question #1142 : Algebra

What is \displaystyle (-3x+1)(-3x-1)?

Possible Answers:

\displaystyle 9x^2 + 1

\displaystyle 9x^2 - 1

\displaystyle 3x^2 - 9

\displaystyle -9x^2 + 1

\displaystyle -9x^2 - 1

Correct answer:

\displaystyle 9x^2 - 1

Explanation:

Diffference of two squares formula,

\displaystyle (-3x+1)(-3x-1) =

\displaystyle (-3x)^2 - (1)^2 =

\displaystyle 9x^2 - 1

 Note that \displaystyle (-3)^2 = 9, negative cancels out.  

You can also FOIL: \displaystyle (-3x+1)(-3x-1) =

Multiplying the first terms, outer terms, inner terms, and last terms results in the following.

\displaystyle 9x^2 + 3x - 3x - 1 =

\displaystyle 9x^2 - 1

Example Question #45 : Distributive Property

Multiply the complex numbers:

 (3+4i)(2+8i)\displaystyle (3+4i)(2+8i).

Possible Answers:

22+32i\displaystyle 22+32i

-24+30i\displaystyle -24+30i

-26-32i\displaystyle -26-32i

26+32i\displaystyle 26+32i

-26+32i\displaystyle -26+32i

Correct answer:

-26+32i\displaystyle -26+32i

Explanation:

Expanding out gives 6+24i+8i+32i^{2}\displaystyle 6+24i+8i+32i^{2}.

We know that i=\sqrt{-1}\displaystyle i=\sqrt{-1} so when we substitute that in we get 6+32i-32\displaystyle 6+32i-32.

Example Question #1142 : Algebra

Solve for \displaystyle x.

\displaystyle 7x = -3(4-x)

Possible Answers:

\displaystyle \frac{1}{2}

\displaystyle -3

\displaystyle 3

\displaystyle \frac{6}{5}

\displaystyle \frac{3}{2}

Correct answer:

\displaystyle -3

Explanation:

To solve this equation, first distribute on the right side of the equation.

\displaystyle 7x = -12+3x

Then, subtract \displaystyle 3x from both sides.

\displaystyle 4x=-12

Then divide both sides by \displaystyle 4.

\displaystyle \frac{4x}{4}=\frac{-12}{4}

\displaystyle x=-3

Another method for solving this problem is to plug in the answer choices and solve. 

Example Question #1141 : Algebra

\displaystyle (x+y)(x+2y)=

Possible Answers:

\displaystyle x^2+4xy+2y^2

\displaystyle x^2+3xy+2y^2

\displaystyle x^2+xy+2y^2

\displaystyle x^2+2xy+2y^2

Correct answer:

\displaystyle x^2+3xy+2y^2

Explanation:

FOIL by using the distributive property.

\displaystyle x^2+2xy+xy+2y^2

Now, simplify.

\displaystyle x^2+3xy+2y^2

Learning Tools by Varsity Tutors